
Non-desynchronizable Service Choreographies

Gero Decker1, Alistair Barros2, Frank Michael Kraft3, and Niels Lohmann4

1 Hasso-Plattner-Institute, University of Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

2 SAP Research Centre, Brisbane, Australia
alistair.barros@sap.com

3 SAP AG, Walldorf, Germany
frank.michael.kraft@sap.com

4 Institut für Informatik, Universität Rostock, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. A precise definition of interaction behavior between services
is a prerequisite for successful business-to-business integration. Service
choreographies provide a view on message exchanges and their order-
ing constraints from a global perspective. Assuming message sending
and receiving as one atomic step allows to reduce the modelers’ effort.
As downside, problematic race conditions resulting in deadlocks might
appear when realizing the choreography using services that exchange
messages asynchronously. This paper presents typical issues when desyn-
chronizing service choreographies. Solutions from practice are discussed
and a formal approach based on Petri nets is introduced for identifying
desynchronizable choreographies.

1 Introduction

The service oriented architecture (SOA) is an architectural style for building
software systems based on services. Services are loosely coupled components
described in a uniform way that can be discovered and composed. One realization
of a SOA is the web services platform architecture where services are offered as
web services [1].

In a first generation of services only pairs of request/response message ex-
changes were considered. This view is sufficient when considering simple services,
for instance, a stock information service, where the current or a past value of a
share can be requested. However, more complex interactions must be considered
in many real-world business scenarios. For instance, in a typical purchasing sce-
nario, goods can be ordered, orders can be modified or canceled, orders must be
acknowledged and delivery can be rerouted, or alternative products or quantities
are offered in out-of-stock situations. Also multi-lateral scenarios involving, for
instance, external payment, shipment and insurance services need to be consid-
ered. These scenarios involve multiple interactions and the complex dependencies
between them must be addressed.

Service choreographies are a means to specify the messages exchanged between
different services and the dependencies between them. Even multi-lateral scenarios

can be captured with typical languages such as the Web Service Choreography
Description Language (WS-CDL [2]). Here, interactions between services are
the atomic building blocks and ordering constraints are defined between them.
That is, sending and receiving of messages are modeled as one step. The ordering
constraints then define what other interactions must have occurred before a
certain interaction. In the remainder we will refer to this modeling style as
interaction modeling.

Interaction modeling, as opposed to distinguishing message sending and
reception as separate activities in the control flow, results in several advantages for
the modeler. (i) Control flow dependencies do not need to be specified per service,
but rather as seen from the perspective of an ideal observer. That way redundant
control flow relationships are avoided and the chance of modeling deadlock
situations is minimized. Furthermore, avoiding redundant structures allows for
faster model creation. (ii) Branching structures can be specified globally, that
way avoiding modeling errors caused by incompatible branching structures [3].

As a downside of interaction modeling, the intuitive interpretation that all
interactions are atomic steps hides certain challenges that arise when taking the
choreography to an asynchronous world. Especially in situations where there
exists a mutual exclusion between two interactions with different senders, i. e.
mixed choices, the asynchronous nature of message exchanges might cause severe
problems due to race conditions.

This paper addresses the issue of race problems in asynchronous settings.
It discusses typical solutions in real-world applications and presents a formal
framework for detecting and locating race conditions in service choreographies.

The remainder of this paper is structured as follows. The next section will
present a real-world example where mixed choices actually lead to deadlocks.
Section 4 lists and discusses typical solutions in practice, before Sect. 3 introduces
a formal framework for identifying and locating problematic race conditions.
Section 5 reports on related work in this area and Sect. 6 concludes.

2 Motivating Example

A purchase order process looks as follows. A buyer submits an order to a seller.
The seller returns a confirmation message to the buyer. Finally, delivery and
payment are carried out. The buyer and the seller are both realized as services.

Several situations require a deviation from this simple process. While the
seller has not sent a delivery notification and the buyer has not initiated payment
yet, the buyer has the possibility to issue a change request, e. g. demanding an
increased quantity. A change request must be acknowledged by the seller. The
buyer might as well cancel the order which in turn needs to be confirmed by the
seller. On the other hand, there might be a seller initiated change proposal, e. g.
the previous confirmation is revised by proposing a delay of the delivery date.

Figure 1 illustrates these interactions using the interaction Petri net notation
from [4]. Each rectangle represents the message exchange between a sender (upper
left corner) and a receiver (upper right corner). The label at the bottom of a

S B

PO confirm

B S

cancel PO

B S

change req

S B

ack cancel

B S

PO

S B

delivery not.

B S

payment

S B

ack

S B

change prop

B S

prop accept

p1 p2

p4

p3

p5

p6

p7 p8

Fig. 1. Purchase order choreography.

rectangle indicates the message type. The circles represent places that can contain
tokens. The token flow defines the control ordering constraints between message
exchanges belonging to the same choreography instance.

The interaction Petri net assumes a world where message send and receive
happen in one atomic step. This assumption is not valid in many scenarios. In our
example, the different services might send messages concurrently. For example,
the buyer’s and seller’s decisions to send change requests or change proposals are
decoupled and therefore it is a common scenario that the services send messages
concurrently. Therefore, we need to desynchronize the choreography to properly
reflect that message sending and receiving are separate steps. Figure 2 shows a
corresponding Petri net.

The original purchase order model does not contain any obvious problems.
Each choreography instance eventually terminates in a state where there is one
token left on place p8 of the net. The desynchronized model, on the other hand,
contains several problems. For instance, a deadlock occurs if the buyer decides to
cancel the order and the seller proposes a change. Here, the buyer would wait
infinitely for a confirmation of the cancellation and the seller waits infinitely for
the response to his proposal.

The issues presented in this example are not specific to purchase ordering
scenarios. Similar issues can be found in many other areas of enterprise systems.
In order to detect and locate such race problems, we introduce a formal approach
in the next section.

!c

?c

Buyer

Seller

cancel
PO

?oc

!oc

PO
confirm

?ca

!ca

ack
cancel

!o

?o

PO

?cp !pa

!cp ?pa

!cr ?a

?cr !a

?d !p

!d ?p

Change
prop

Prop
accept

Change
req

Ack
Delivery
not.

Pay-
ment

b1 b2

b3

b4 b5

b6

b7 b8

s1 s2

s3

s4 s5

s6

s7 s8

Fig. 2. Desynchronized purchase order choreography.

3 Formal Model

This section will introduce a formal framework for detecting and locating prob-
lematic race conditions in service choreographies. The framework builds upon
Interaction Petri nets (IPNs), a special kind of labeled Petri nets, where a transi-
tion models the message exchange between two services. IPNs have been proposed
in [4]. While the example presented in Sect. 2 is bilateral, IPNs can also be used
to represent multi-lateral choreographies, i. e. more than two roles are involved
in the choreography. IPNs have the same token flow semantics as classical Petri
nets [5] and concentrate on the control and message flow aspect of choreographies.

Definition 1 (Petri Net). A Petri net is a tuple [P, T, F,m0] where P and T
are two finite disjoint sets of places and transitions, respectively, F ⊆

(
(P × T)∪

(T × P)
)

is a flow relation, and m0 : P → IN is an initial marking.

We assume the standard firing rule of Petri nets, and write m t−→ m′ if the
marking m′ is reachable from marking m by firing transition t. Reachability can
be canonically extended to transition sequences.

Message types are first-class constructs in IPNs, allowing the distinction
between, for example, acceptance and rejection messages. In the following defini-
tions, we denote the set of all roles by R. A concrete service participating in a
choreography instance plays one or several roles, for example, “buyer” or “seller”.
The set of message types is denoted by MT .

Definition 2 (Interaction Petri Net). An Interaction Petri net (IPN) is a
tuple N = [P, T, F,m0,final , λ] where
– [P, T, F,m0] is a Petri net,
– final is a finite set of valid final markings, and
– λ : T → (R×R×MT) ∪ {τ} is a labeling function assigning a sender role,

a receiver role and a message type to a transition, or declaring it as silent
transition.

The IPN in Fig. 1, has two roles R = {B,S}, ten message types MT =
{PO,PO confirm, . . . , payment}, and [p8] (i. e., one token on place p8) is the only
final marking. With the help of final markings, we can differentiate desired final
states from unwanted deadlocks. This can be expressed with the concept of weak
termination.

Definition 3 (Weak Termination). An interaction Petri net weakly termi-
nates iff, from every marking reachable from m0, a final marking mf ∈ final is
reachable.

It can be easily checked that the IPN in Fig. 1 weakly terminates; that is,
the marking [p8] can be reached from all reachable markings.

The following definition bridges service choreographies and the local views on
such a choreography, i. e. the subset of interactions and control flow dependencies
that are relevant for a given role.

Definition 4 (Role Projection). Let N1 and N2 be interaction Petri nets. N1

is the projection of N2 for role r iff ∀t ∈ T1 : λ(t) = τ ∨ r ∈ λ(t), and there exists
a relation Q between the markings of N1 and N2 such that:

i. m01 Q m02,
ii. if m1 Q m2, m1

t→N1 m
′
1 and r /∈ λ(t), then m′1 Q m2,

iii. if m1 Q m2, m1
t→N1 m

′
1 and r ∈ λ(t), then m2

t=⇒N2 m
′
2 and m′1 Q m′2,

iv. if m1 Q m2, m2
t=⇒N2 m

′
2 and r ∈ λ(t), then m1

t=⇒N1 m
′
1 and m′1 Q m′2,

v. if m1 Q m2 and m1 ∈ final1, then m2 =⇒N2 m
′
2 and m′2 ∈ final2,

vi. if m1 Q m2 and m2 ∈ final2, then m1 =⇒N1 m
′
1 and m′1 ∈ final1,

where m =⇒ m′ denotes that there exists a (potentially empty) firing sequence of
transitions t1, . . . , tn from m to m′ where for all ti holds r /∈ λ(ti) and m t=⇒ m′

denotes m =⇒ t→ m′. Furthermore, r ∈ λ(t) denotes that r is the sending or
receiving role of t.

Role projection ensures that the order of communication actions possible
in the local view correspond to the order of interactions as specified in the
choreography. By considering the branching structures, role projection goes
beyond trace comparison. The relation is similar to branching bisimulation [6],
while there are key differences: Whenever branching within a service depends on
a choice done by other services, no internal decision must be made. On top of
that, role projection relates the sets of final markings.

The projection algorithm in [4] preserves role projection. This algorithm
projects a choreography by applying transformation rules on the structure of the
interaction Petri net.

We assume that a service choreography is realizable [7, 4]. This ensures that
there is indeed a set of local views that, assuming synchronous communication,
collectively show exactly the behavior as specified in the choreography.

An IPN Ns can be “desynchronized” to a net Na using the role projections
of Ns. Thereby, we introduce a place pα for each message type α of the IPN Ns
which models an asynchronous message channel and is connected to the sender
and receiver according to the roles. Whereas communication is atomic in Ns, the
sending and receipt of a message is x explicitly modeled by two transitions !x
and ?x of Na.

Definition 5 (Desynchronized Net). Let Ns be an IPN and R = {r1, . . . , rn}
the set of all roles involved in Ns. The IPN Na is a desynchronized net for Ns
iff, for all i = 1, . . . , n, Ni are pairwise disjoint role projections of Ns for roles
ri, and

– Pa =
⋃
i Pi ∪ {pα | ∃t ∈ Ts : (λ(t) 6= τ ∧ α = λ(t))},

– Ta =
⋃
i Ti,

– Fa =
⋃
i Fi ∪ {(t, pα) | ∃x,mt (λ(t) = (ri, x,mt))}∪{(pα, t) | ∃x,mt (λ(t) =

(x, ri,mt))},
– m0a = m01 ⊕ · · · ⊕m0n,
– finala = {mf1 ⊕ · · · ⊕mfn | mfi ∈ final i}, and
– λa(t) = λi(t) iff t ∈ Ti.

The composition of markings is defined as m1 ⊕ · · · ⊕mn(p) = mi(p) iff p ∈ Pi.

The desynchronized net Na usually has more behavior than the original
IPN Ns: The atomic message transfer in Ns can be mimicked by Na by firing
first the sending and then the receiving transition. Moreover, it might also be
possible that Na can fire a transition in an intermediate state introduced by the
decoupling of sender and receiver. If this additional behavior does not jeopardize
weak termination, Ns is desynchronizable.

Definition 6 (Desynchronizability). Let Ns be a weakly terminating IPN.
Ns is desynchronizable iff there exists a desynchronized net Na for Ns that weakly
terminates.

[p3]

[p4]

cppa

c [p6] [p8]
ca

(a) synchronous choreography

[b3,s3]

[b3,s4,cp]

[b4,s4]

[b3,s4,pa]

[b6,s3,c]

[b6,s4,cp,c]

[b6,s4,pa,c]

!cp

?cp

!pa

?pa ?pa

!c

!c

!c

!cp

[b6,s6] [b6,s8,ca] [b8,s8]
?c !ca ?ca

(b) asynchronous choreography with deadlock

Fig. 3. Reachability graphs showing the example’s race problem.

The most frequent reason for non-desynchronizable choreographies are mixed
choices, where there is a conflict between transitions with different senders. As
mentioned earlier, the desynchronized example choreography (see Fig. 2) contains
a deadlock. Thus, the original choreography in Fig. 1 is not desynchronizable.
This can be detected by analyzing the reachability graphs of the nets. In Fig. 3(a),
a part of the reachability graph of the original choreography is depicted. In the
marking [p3] the transitions c and cp are (among others) enabled. The same
situation is depicted in Fig. 3(b) for the desynchronized net. Here, the transitions
!c and !cp are enabled in [b3, s3], but can occur concurrently: neither transition
disables the other, and a deadlocking marking [b6, s4, cp, c] is reachable when
firing these transitions in either order.

Definition 7 (Conflict Transitions). Let Ns be a non-desynchronizable inter-
action Petri net and Na a desynchronized net for Ns. Define the set of conflict
transitions TC to contain all transitions t of Na such that:
– there exists a marking m with m ∗−→ mf for a marking mf ∈ final, and
– there exists a marking m′ with m t−→ m′ and m′ 6 ∗−→ m′f for any m′f ∈ final.

The set TC contains all transitions whose firings can make a final marking
unreachable. From Fig. 3(b) we can conclude that the transitions !c and !cp
are conflict transitions for the desynchronized net of Fig. 2. With state-of-the-
art Petri net model checkers such as LoLA [8], race problems can be detected
efficiently even for larger choreographies.

While mixed choices are a typical reason for race problems, not all mixed
choices are problematic (see Fig. 4). Here, both services can send a message before

A B

x

B A

y

B A

y

A B

x

!x

?y

?y

!x

?x

!y

!y

?x

A

B

x y

Fig. 4. Structural conflicts do not necessarily lead to deadlocks.

A B

v

B A

w

A B

x

B A

y

B A

z

p1 p2

p3 p4

p5

(a) synchronous choreography

?v ?x

!w !z

!y

xv

B

b1 b2

b5

!v !x

?w !z

?yA

a1 a2

a3 a4

a5

w z y

b3 b4

(b) desynchronized choreography

Fig. 5. Conflict transitions without structural conflict.

A B

v

C B

x

B A

w

B C

y

p1

p2

p3

p4

(a) synchronous choreography

A

?v !w

?x !y

w

yx

v

!v ?w

!x ?yC

B

a1 a2 a3

b1

b2

b3

c1 c2 c3

b4

(b) desynchronized choreography

Fig. 6. Deadlocks caused by firing transitions in a valid final marking.

receiving one. However, due to the follow-up interactions, the desynchronized
choreography weakly terminates.

Finally, conflict transitions do not necessarily need to be in a structural
conflict, i. e. sharing common input places. Figure 5(a) shows a synchronous
choreography that weakly terminates with final marking [p5]. Here, the choice
whether the transition regarding message v or the transition regarding w fires first
influences what transitions will be enabled later on. If the transition involving v
fires, the transition involving z will not be enabled any longer.

The definition of conflict transitions also captures those scenarios where
individual services are able to send messages in a final marking. Figure 6(a)
shows an example involving three roles and final marking [p4]. Figure 6(b) shows
the desynchronized choreography as generated by the algorithm in [4]. The final
markings for the individual role projections are [a1] and [a3] for A, [b4] for B and
[c1] and [c3] for C. This results in the valid final markings [a1, b4, c3], [a3, b4, c1],
[a1, b4, c1], and [a3, b4, c3] for the desynchronized choreography, while only the
first two markings are actually reachable. In marking [a1, b4, c3] role A is ready to
fire transition !v. Firing this transition actually leads to a marking from where no
valid final marking can be reached any more. Therefore, !v is a conflict transition.

4 Typical Resolutions to Race Problems

The definitions from the previous section enable us to locate conflict transitions.
As a next step, one or several strategies have to be chosen to remove race problems
from a choreography. Instead of formally proposing one particular strategy or
defining an algorithm to automatically choose among different possible strategies,
we rather sketch several strategies applied in real-world implementations in this
section. Each strategy comes with a set of implications on the business level that
need to be carefully considered before applying them.

In the remainder of this section we will use the term conflicting messages for
a pair of messages sent by different partners that correspond to a pair of conflict
transitions as defined in the previous section. Both messages must belong to the
same choreography instance.

It could be a possible strategy to resolve the choreography in such a way
that conflicting messages simply cannot occur any longer. For the example, this
would mean that there is no chance of having a delivery notification and a cancel
message been sent in the same choreography instance. This could be achieved
for instance through total sequentialization of the choreography, where only
one partner is allowed to send messages at a time. However, such a strategy is
typically not feasible in real-world scenarios. It is often desired that conflicting
messages are possible but for the case that this occurs, a predefined resolution
must be in place. Therefore, we are going to list different strategies applied in
practice that follow this approach.

The following strategies can be categorized into two groups. Either (a) there
is a predefined outcome upon conflicting messages, most typically one message
is considered and the others are ignored, or there might be different outcomes
possible. Here, we can again distinguish three types: (b) one partner could be
allowed to determine the outcome and tell the other partners his decision; it
could also be defined that (c) each partner decides individually for the outcome,
or that (d) there is a negotiation regarding the desired outcome.

4.1 Precedence

The general idea is to define precedence relationships at design-time, prescribing
how partners have to behave in the case of conflicting messages. Therefore,

precedence mostly falls into category (a). If a partner detects conflict messages,
he knows the outcome of this conflict and can immediately continue accordingly.
He assumes that the other partners will also detect this conflict sooner or later
and also act accordingly.

The definition of precedence relationships must not be seen as pure technicality
as it directly has business impact. Therefore, precedence relationships would
need to be part of interaction contracts. Regarding the definition of precedence
relationships we distinguish three different strategies.

Singular Interaction Partner Precedence This strategy looks at individual
interactions, e. g. the cancellation interaction in our example, and defines prece-
dence of one partner over the other. Here, we can distinguish between two settings:
(i) the buyer has precedence over the seller or (ii) the seller has precedence over
the buyer.

Case (i) means that if the buyer sends the cancellation, the seller has to
accept the buyer’s cancellation in any case. This means that the buyer can
assume that the cancellation message will have the desired effect, once it has
been sent. Therefore, the seller does not need to return any confirmation message
in this case. This corresponds to category (a).

In case (ii) the seller has a veto right regarding cancellation messages sent
by the buyer. The seller can accept this request and return a cancellation
confirmation. Only now the buyer can be sure that cancellation was successful.
As an alternative, the seller could also send a cancellation rejection. Therefore,
the seller can decide on the outcome, implying category (b).

Deciding for each interaction for a partner precedence individually does not
solve race problems in the general case. If, for example, we decide that the
buyer has precedence regarding buyer initiated cancellation and the seller has
precedence regarding seller initiated change proposals, deadlocks are still possible.
Now imagine the opposite setting where the seller has precedence regarding buyer
initiated cancellation and the buyer has precedence regarding seller initiated
change proposals. Here, the partners have veto rights for the corresponding
requests. If the buyer sends a cancellation request and the seller sends a change
proposal at the same time, the buyer will reject the change proposal as it
conflicts with the previously sent cancellation request. The same holds true for
the seller reacting to the cancellation request. After both partners have rejected
the respective requests, they can, of course, resend their requests.

Type-based Precedence between Multiple Interactions While the previ-
ous strategy considered interactions individually, this strategy considers prece-
dence regarding combinations of interactions. Here, the message types are con-
sidered and always a fixed outcome is defined, therefore category (a). A crucial
aspect of this strategy is that no combination of interactions is forgotten.

A precedence rule could be that a delivery notification has precedence over
buyer initiated cancellation messages and buyer initiated change requests. On the
other hand, a buyer initiated request always has precedence over seller initiated

change proposals. Figure 7 illustrates a resolved desynchronized choreography
for this precedence rule. This resolved version weakly terminates. All transitions
that were added to the original Petri net with striped background.

!c

?c

Buyer

Seller

cancel
PO

?ca

!ca

ack
cancel

?cp !pa

!cp ?pa

!cr ?a

?cr !a

?d

!d

Change
prop

Prop
accept

Change
req

Ack
Delivery
not.

!p

?p

Pay-
ment

?d?d

?cr ?c

?cp

?pa ?c

?cr

Additional transition for removing
remaining tokens

Additional transition for receiving
preceding messages

Fig. 7. Resolved purchase order choreography.

A conflict between a seller initiated change proposal and a buyer initiated
change request is resolved in the following way. In addition to being ready
to consume an acceptance message for the change proposal, the seller can also
consume a change request or a cancel message instead. This is manifested through
the additional transitions ?cr and ?c transitions. The change proposal message
must finally be consumed by the buyer without having any effect on the buyer.
This happens through the additional ?cp transition.

The proposed solution in Fig. 7 is still not optimal from a business point of
view. If the seller sends a change proposal while the buyer sends a change request,
the messages conflict and the seller will receive the change request and accept
it. In this situation, the seller assumes that the buyer will ignore the change
proposal. However, the buyer could receive the accept message first and receive
the change proposal afterwards. Now, the buyer cannot know that this change
proposal conflicted with the change request and therefore accepts the proposal.
However, the seller is not able to receive this message and will only remove the
remaining token at the end of the choreography. From a business point of view
this behavior is undesired: the buyer has accepted a change proposal that the
seller assumes obsolete.

Another problem might arise when precedences are cyclic: Imagine there are
three partners A, B and C. A can send a message to B (interaction ab), B to C
(bc), and C to A (ca). bc has precedence over ab, ca has precedence over bc, and

ab has precedence over ca. Now a conflict involving all three interactions occurs.
Every partner thinks that his message has precedence over the message received
and simply ignores the incoming message. This again could result in a deadlock.

Situation-based Precedence between Multiple Interactions While prece-
dence rules between different interactions were based on message types, this strat-
egy allows more fine-grained precedence rules and again falls into category (a).

Imagine a logistics scenario where a customer lets a shipper transport his
goods. The shipper selects different carriers and creates a shipment that he sends
to the customer and which needs to be commented by the customer. At the same
time, the customer has the possibility to cancel his order. While cancellation
precedes the shipment plan interaction in the default case, this is only true for
the first two weeks after the initial order. After these two weeks have passed, the
shipment plan interaction precedes the cancellation. This might be due to the
fact that cancellation at this point in time would simply involve too much cost.
However, while the shipment plan has not been finalized yet, the customer can
still cancel the order.

An underlying assumption of this strategy is that both partners come to the
same conclusion about precedence. As time is the criterion in this example, both
need common understanding about when the two weeks have passed. Therefore,
the arrival time of the message cannot be used as criterion, as the corresponding
sender might not be able to know when this is.

4.2 Allowing Individual Decisions

Allowing individual decisions leaves it open to every partner involved to decide for
an outcome individually: category (c). In the case of a buyer initiated cancellation
request conflicting with a seller initiated change request, there are two alternatives
for each partner:

– The seller either (S1) rejects the cancellation request and assumes that the
change request has still relevance or (S2) accepts the cancellation request
and assumes that the change request is obsolete.

– The buyer either (B1) rejects the change request and assumes that the
cancellation request has still relevance or (B2) accepts the change request
and assumes that the cancellation request is obsolete.

Out of these possibilities two are ideal outcomes: The combinations (S1)+(B2) and
(S2)+(B1) lead to the acceptance of exactly one request. Even the combination
(S1)+(B1) is acceptable, as the choreography instance is exactly in the same
state as before the two requests and requests can be issued again. Maybe this
time, one of the partner succeeds with his intent.

Only the combination (S2)+(B2) is problematic as both requests were accepted
and both partners assume a wrong situation. However, once an accept message
finally arrives, the conflict is detected and a resolution can be achieved as described
in the other strategies.

Although this strategy does not guarantee a proper resolution in the general
case and requires resorting to other resolution strategies, it is still worth con-
sidering as most outcomes are acceptable. A major challenge of this approach
is that the process instances need to be realigned in case a partner has already
continued, assuming his decision led to an acceptable situation. This might involve
compensation and becomes especially difficult if communication to other partners
is involved.

4.3 Negotiation of Outcome

Negotiation is another strategy where the outcome of conflicting messages is
not fixed, therefore category (d). Here, the different partners need to reach
agreement about the outcome. Such negotiation can either happen through
human intervention or automatically. Human intervention could simply involve a
phone call or an email exchange. In many cases such human intervention is actually
desirable. For instance, the cost of cancellation might increase depending on what
actions the partner has already performed. Therefore, it could be negotiated
whether cancellation is still desired under the new conditions.

As an alternative, a formal hand-shake to support negotiation could be
factored into each partner’s process. For this, all partners need to agree on
conflicting messages requiring negotiation and implement common exception
handling logic. This would involve strictly sequential interactions, as partners
arbitrarily reciprocate to resolve the conflict. First, conflicting messages would
be detected by a partner and be broadcast to relevant partners. Each partners
process would be required to escalate to its common exception handling logic
such that all parts of the process impacted by the conflict are suspended. The
first part of the exception handling logic would be to determine which partner
gets the write token. This remains an open issue although some basic heuristics
could be defined, e. g. the first partner detecting the conflicting messages gets
the write token. Another serious issue is managing multiple conflicts which can
arise concurrently and determining the priority in which they should be handled.
These and other issues have been handled in techniques applied for self-stabilizing
systems [9].

5 Related Work

Different service choreography languages have been proposed that follow the
interaction modeling style. The Web Service Choreography Description Language
(WS-CDL [2]) is a standard proposed by the World Wide Web Consortium.
Alternative proposals from academia are Let’s Dance [10] and the Interactive
Systems Description Language (ISDL [11]). The issue of race problems when
taking choreographies defined in these languages to an asynchronous world has
not been tackled so far.

There are different formal models available for describing choreographies.
A survey can be found in [12], where a distinction between automata-based,

Petri-net-based and process-algebra-based approaches is made. Most approaches
include techniques for relating choreographies to models describing the behavior
of individual services. For instance, [13] use a bisimulation-like relation to check
conformance between a local model and the choreography.

There has been extensive research in the area of compatibility checking, where
the absence of deadlocks is of central importance, e. g. [14–17]. While detecting
and locating deadlocks is covered by most approaches, more novel approaches deal
with the question of automatically repairing faulty choreographies [18]. While
such approaches could indeed be used to repair the choreography presented in
Sect. 2, any outcome would include forbidding certain messages. Either the buyer
must not send a change request or a cancellation message, or the seller must not
send a change proposal or a delivery notification. Such a solution is primarily
aimed to explain faulty choreographies by proposing fixed versions, but would,
of course, be inacceptable from a business point of view.

The issue of desynchronizability is closely related to the question of synchro-
nizability of asynchronous choreographies [19]. If an asynchronous choreography
is synchronizable then the same set of choreography instances are produced under
asynchronous and synchronous communication semantics. If applied in a top-
down manner, i. e. a synchronous choreography is projected to an asynchronous
choreography, synchronizability can be used to detect race problems as presented
in this paper. However, our approach goes beyond synchronizability analysis as
it allows to locate the reasons of desynchronizability. This is important as there
might be different sets of conflict transitions that might be treated in isolation of
each other, which in turn might allow for a less-invasive resolution.

The problem of mixed choices between sending and receiving has been studied
in the context of distributed message protocols and algorithms [20]. For example,
the crosstalk algorithm adds round numbers to each sent message which help to
identify and solve conflicts. Again, such protocols do not take the content and
the original choreography into account and thus are not suitable to solve the
problem from a business point of view.

6 Conclusion

This paper has discussed the issue of non-desynchronizability in choreographies
where message send and receive activities are considered as atomic steps. We
introduced a formal approach for detecting and locating potentially conflicting
message exchanges. This approach is based on interaction Petri nets.

We have implemented a tool that realizes this approach. As an extension
to the web-based modeling platform Oryx5, interaction Petri net stencils and
a plugin for desynchronizability checking were developed. Figure 8 shows a
screenshot of the tool, where the conflict transitions of the initial example are
highlighted in red and bold labels. In future work, we will extend the tool chain to
desynchronizability analysis for iBPMN choreographies. iBPMN is an extension

5 See http://oryx-editor.org.

Fig. 8. Screenshot of the interaction Petri net modeler and desynchronizability checker.

for the Business Process Modeling Notation (BPMN [21]), allowing for interaction
modeling in a BPMN-like notation [3].

The resolution of race problems is not a pure technical issue that can be
carried out late in the actual development of services. The discussion of typical
resolution strategies in Sect. 4 has shown business implications when choosing
one strategy or another. Therefore, precedence relationships, for instance, would
have to be discussed and defined in very early choreography design stages.

The current solution to non-desynchronizable choreographies looks as follows:
An interaction model is created, then desynchronizability is verified as presented
in Sect. 3. If desynchronizability is detected the desynchronized choreography
can directly be used as starting point for implementing services or adapting
existing ones. If this is not the case, manual resolution along one of the resolution
strategies has to be carried out for the desynchronized choreography first.

One might argue that we do not need interaction models all together as we have
to resort to asynchronous models anyway (in the case of non-desynchronizability),
and we should rather use asynchronous models from the beginning. However, the
advantages gained for the desynchronizable parts of the choreography are already
immense. Having the possibility to generate the desynchronized model increases
modeling speed.

A classification of different resolution strategies shows the vision for dealing
with non-desynchronizability. Ideally, modelers can choose from a predefined
set of strategies, being informed about the business implications of a chosen
strategy. Such a declarative approach would finally result in generating fully
resolved choreographies. With such an approach the modelers would not need to
touch the generated model any longer. Therefore, future work will center around
formally refining the different strategies and proposing a declarative framework
for the resolution of race problems.

References

1. Curbera, F., Leymann, F., Storey, T., Ferguson, D., Weerawarana, S.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR (2005)

2. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation. Technical
report (2005) http://www.w3.org/TR/ws-cdl-10.

3. Decker, G., Barros, A.: Interaction Modeling using BPMN. In: Proc. BPM
Workshops 2007. Volume 4928 of LNCS. (2007) 206–217

4. Decker, G., Weske, M.: Local enforceability in Interaction Petri Nets. In: Proc.
BPM 2007. Volume 4714 of LNCS., Springer (2007) 305–319

5. Reisig, W.: Petri Nets. Springer (1985)
6. Glabbeek, R.J.v., Weijland, W.P.: Branching time and abstraction in bisimulation

semantics. J. ACM 43(3) (1996) 555–600
7. Fu, X., Bultan, T., Su, J.: Conversation protocols: A formalism for specification

and analysis of reactive electronic services. Theor. Comput. Sci. 328(1-2) (2004)
19–37

8. Schmidt, K.: LoLA: A Low Level Analyser. In: Proc. ICATPN 2000. Volume 1825
of LNCS., Springer (2000) 465–474

9. Dolev, S.: Self-stabilization. MIT Press (2000)
10. Zaha, J.M., Barros, A., Dumas, M., Hofstede, A.H.M.t.: Let’s Dance: A language

for service behavior modeling. In: Proc. OTM Conferences 2006 (1). Volume 4275.,
Springer (2006) 145–162

11. Quartel, D., Dijkman, R., Sinderen, M.v.: Methodological support for service-
oriented design with ISDL. In: Proc. ICSOC 2004, ACM (2004) 1–10

12. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service choreographies.
In: Proc. WS-FM 2007. Volume 4937 of LNCS., Springer (2007) 1–16

13. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration: A synergic approach for system design. In: Proc. ICSOC 2005.
Volume 3826 of LNCS., Springer (2005) 228–240

14. Martens, A.: Analyzing web service based business processes. In: Proc. FASE 2005.
Volume 3442 of LNCS., Springer (2005) 19–33

15. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proc.
WWW 2004, ACM (2004) 621–630

16. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software
architectures. Sci. Comput. Program. 41(2) (2001) 105–138

17. Puhlmann, F., Weske, M.: Interaction soundness for service orchestrations. In:
Proc. ICSOC 2006. Volume 4294 of LNCS., Springer (2006) 302–313

18. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: Proc. BPM 2008. Volume 5240 of LNCS., Springer
(2008) 132–247

19. Fu, X., Bultan, T., Su, J.: Synchronizability of conversations among web services.
IEEE Trans. Softw. Eng. 31(12) (2005) 1042–1055

20. Reisig, W.: Elements of Distributed Algorithms: Modeling and Analysis with Petri
Nets. Springer-Verlag (1998)

21. OMG: Business Process Modeling Notation (BPMN) Specification, Final Adopted
Specification. Technical report, Object Management Group (OMG) (2006)

