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Abstract. When a service engages in multiple interactions concurrently,
it is generally required to correlate incoming messages with messages
previously sent or received. Features to deal with this correlation re-
quirement have been incorporated into standards and tools for service
implementation, but the supported sets of features are ad hoc as there
is a lack of an overarching framework from which their expressiveness
can be evaluated. This paper introduces a set of patterns that provide a
basis for evaluating languages and protocols for service implementation
in terms of their support for correlation. The proposed correlation pat-
terns are grounded in a formal model that views correlation mechanisms
as means of grouping atomic message events into conversations and pro-
cesses. The paper also provides an evaluation of relevant standards in
terms of the patterns, specifically WS-Addressing and BPEL, and dis-
cusses how these standards have and could continue to evolve to address
a wider set of correlation scenarios.

1 Introduction

Contemporary distributed system architectures, in particular service-oriented
architectures, rely on the notion of message exchange as a basic communica-
tion primitive. A message exchange is an interaction between two actors (e.g.
services) composed of two events: a message send event occurring at one actor
and a message receive event at another actor. These events are generally typed
in order to capture their purpose and the structure of the data they convey.
Examples of event types are “Purchase Order”, “Purchase Order Response”,
“Cancel Order Request”, etc. Event types are described within structural in-
terfaces using an interface definition language such as WSDL [1]. Sometimes,
message exchanges are related to one another in simple ways. For example, a
message exchange corresponding to a request may be related to the message
exchange corresponding to the response to this request. Such simple relations
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between message exchanges are described in the structural interface as well (e.g.
as a WSDL operation definition).

The above abstractions are sufficient to describe simple interactions such as
a weather information service that provides an operation to request the fore-
casted temperature for a given location and date. However, they are insufficient
to describe interactions between services that engage in long-running business
transactions such as those that arise in supply chain management, procurement
or logistics. In these contexts, message event types can be related in complex
manners. For example, following the receipt of a purchase order containing sev-
eral line items, an order management service may issue a number of stock avail-
ability requests to multiple warehouses, and by gathering the responses from the
warehouses (up to a timeout event), produce one or several responses for the cus-
tomer. Such services are referred to as conversational services as they engage in
multiple interrelated message exchanges for the purpose of fulfilling a goal. Con-
versational services are often related to (business) process execution, although
as we will see later, conversations and processes are orthogonal concepts.

The need to support the description, implementation and execution of con-
versational services is widely acknowledged. For example, enhancements to the
standard SOAP messaging format and protocol [1] for correlating messages have
been proposed in WS-Addressing [4]. However, WS-Addressing merely allows a
service to declare (at runtime) that a given message is a reply to a previous
message referred to by an identifier. This is only one specific type of relation
between interactions that has a manifestation only at runtime (i.e. it does not
operate at the level of event types) and fails to capture more complicated scenar-
ios where two message send (or receive) events are related not because one is a
reply to another (or is caused by another), but because there is a common event
that causes both. This is the case in the above example where stock availability
requests are caused by the same “purchase order” receive event.

Another upcoming standard, namely WS-BPEL [2], provides further support
for developing conversational services. In particular WS-BPEL supports the no-
tion of process instance: a set of related message send and receive events (among
other kinds of events). Events in WS-BPEL are grouped into process instances
through a mechanism known as instance routing, whereby a receive event that
does not start a new process instance is routed to an existing process instance
based on a common property between this event and a previously recorded send
or receive event. This property may be the fact that both messages are exchanged
in the context of the same HTTP connection, or based on a common identifier
found in the WS-Addressing headers of both events, or a common element or
combination of elements in the message body of both events. Thus, WS-BPEL
allows developers to express event types, which are related to WSDL operations,
and to relate events of these types to process instances. It also allows developers
to capture ordering constraints between events related to a process instance,
which ultimately correspond to causal dependencies (or causal independence).

Despite this limited support for message event correlation, there is currently
no overarching framework capturing the kinds of event correlation that service-
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oriented architectures should support. As a result, different approaches to event
correlation are being incorporated into standards and products in the field, and
there is no clear picture of the event correlation requirements that these stan-
dards and products should fulfill.

In this setting, this paper makes three complementary contributions: (i) a
unified conceptualization of the notions of conversation, process and correlation
in terms of message events (Section 2); (ii) a set of formally defined correla-
tion patterns that cover a spectrum of correlation scenarios in the context of
conversational services (Sections 3, 4 and 5); (iii) an evaluation of the degree
of support for these correlation patterns offered by relevant Web service stan-
dards (Section 6). Together, these contributions provide a foundation to guide
the design of languages and protocols for conversational services.

2 Classification Framework

When talking about correlation we mainly deal with three different concepts:
events, conversations and process instances. An event is an object that is record
of an activity in a system [5]. Events have attributes which describe the cor-
responding activity such as the time period, the performer or the location of
the activity. We assume that a type is assigned to each event. In the area of
service-oriented computing, where emphasis is placed on communication in a
distributed environment, the most important kinds of events include message
send and receipt events. In addition to these communication events that capture
the externally visible behavior of actors, we consider action events, which are
records of internal activities or internal faults within an actor, as well as timeout
events. A message send event is directly caused by an action event that produces
the message in question, while a message receipt event normally leads to (i.e.
causes) an action event that consumes the message in question. We postulate the
existence of a causal relation between communication events and action events.
In addition, we postulate the existence of a causal relation between send events
and their corresponding receipt events. Figure 1 illustrates these causal relations.

Fig. 1. Action and communication events
Fig. 2. Framework for classifying
correlation patterns
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Events can be grouped in different ways, e.g. all events occurring at one
particular actor can be grouped together. Since this work deals with event cor-
relation in conversational services, we consider two types of event grouping: con-
versations and process instances. Conversations are groups of communication
events occurring at different actors that all correspond to achieving a certain
goal. Boundaries of conversations might be defined through interaction models
(choreographies) or might not be defined in advance but rather discovered a
posteriori. Process instances are groups of action events occurring at one actor.
Boundaries of process instances are determined by process models.

Figure 2 illustrates a framework for classifying correlation patterns. At the
bottom there are partially ordered events. We assume that each event has a
timestamp, but since events may be recorded by different actors with discrepant
clocks, we may not be able to linearly order all events using their timestamps.
However, we can use the timestamps to linearly order events recorded by a given
actor (assuming a perfect clock within one actor). From there, we can derive a
partial order between events recorded by different actors using the relation be-
tween message send events and their corresponding receipt events as formalized
below. In the case of multiple clocks within one actor due to decomposition into
distributed components, causal relations between action events occurring in dif-
ferent components can replace the pure timestamp-based ordering. But for the
sake of simplicity, we assume that all events within one actor are totally ordered.

Conversations and process instances are sets of correlated events. The dif-
ferent patterns describing the relationships between events, conversations and
process instances are grouped into four categories (for numbering see Figure 2).

1. Mechanisms to group events into conversations and process instances. These
correlation mechanisms are presented in Section 3.

2. Having identified conversations, we can examine how conversations are struc-
tured. In previous work we investigated common interaction scenarios be-
tween participants within one conversation [6]. The conversation patterns in
Section 4 present relationships between different conversations.

3. Relationships between conversations and process instances are covered in
Section 5.

4. Common patterns of action events within one process instance have been
studied in [7]. Additional work is required to identify patterns describing
the relationships between different process instances, but this is outside the
scope of this paper.

The proposed patterns are formally described based on the idea of viewing
events from a post-mortem perspective. This could be seen as analyzing logs
of past events. This view is taken for the sake of providing a unified formal
description. In practice the patterns will not necessarily be used to analyze event
logs, but rather to assess the capabilities of languages that deal with correlation
in SOAs. A language will be said to support a pattern if there is a construct in
the language (or a combination of constructs) that allows developers to describe
or implement services which, if executed an arbitrary number of times, would
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generate event logs that satisfy the conditions captured in the formalization of
the correlation pattern. In the sequel, we use the following formal notations:

– E is the set of events
– CE ,AE ⊆ E are the communication and action events (CE ∩AE = ∅)
– A is the set of actors
– <t⊆ E×E partially orders the events occurring at the same actor according

to their timestamps
– <c⊆ E × E is the causal relation between events, including pairs of corre-

sponding send and receipt events as well as corresponding communication
and action events

– < is a partial order relation on E being the transitive closure of <t and <c:
<:= (<t ∪ <c)+.

– Conv ⊆ ℘(CE) and PI ⊆ ℘(AE) are sets of sets of communication and ac-
tion events corresponding to groupings of events into conversations (Conv)
and process instances (PI), respectively. These sets will in principle be gen-
erated using correlation mechanisms as discussed below.

3 Correlation Mechanisms

The correlation mechanism patterns focus on how events can be correlated to
different process instances and more importantly to different conversations.

The purpose of correlation is to group messages into traces based on their
contents (including message headers). Current web service standards do not
impose that every message must include a “service instance identifier”. Hence,
assuming the existence of such identifier may be unrealistic in some situations.
Other monitoring approaches in the field of web services have recognized this
problem and have addressed it in different ways, but they usually end up relying
on very specific and sometimes proprietary approaches. For example the Web
Services Navigator [12] uses IBM’s Data Collector to log both the contents and
context of SOAP messages. But to capture correlation, the Data Collector inserts
a proprietary SOAP header element into every message.

To achieve a general approach to correlation in SOAs, we need to make
as few assumptions as possible. In this paper, we assume that message events
contain a timestamp and data (i.e. contents), but not necessarily a message
identifier. a message identifier as part of their contents, but this is not part
of our assumptions. Thus, message event correlation can be performed based
on data or based on timestamp. Secondly, we assume that two events can be
correlated in the following cases: (1) Both events have a common property, e.g.
there exists a function that when applied to both events yields the same value.
For example, two events can be correlated simply because they are performed
by the same actor, or because they refer to the same purchase order. (2) One
event is a cause of the other (directly or transitively), or there is a third event
which is a cause (directly or transitively) of both events, or both events are a
common cause (directly or transitively) of a third event.
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Accordingly, we introduce two categories of correlation mechanisms: function-
based correlation (case 1 above) and chained correlation (case 2). Different flavors
of each category are presented, some based on data and others on time. The
application of a particular function-based or chained correlation mechanism or a
combination of different mechanisms leads to a correlation scheme. Such schemes
are sets of sets of correlated events that might be interpreted e.g. as conversations
or process instances later on. Different combinations are discussed in this section.

3.1 Function-based Correlation

Functions assign labels to an event. Events with common labels are then grouped
together. We distinguish three correlation mechanisms in this category: the first
two deal with correlation based on data, while the third deals with correlation
based on time. Strictly speaking, the first two patterns could be merged into a
single one (i.e. the second pattern subsumes the first one). However, we treat
them separately since, as discussed later, existing standards tend to support the
first one but not the second.

C1. Key-based correlation. One or a set of unique identifiers are assigned to
an event and all events with at least one common identifier are grouped together.
Example: a process instance identifier or a conversation identifier is attached
to each event. Identifiers can be single values or compositions of several values.

C2. Property-based correlation. A function assigns a label to an event de-
pending on the value of its attributes. In contrast to key-based correlation not
only equality can be used in the function. Operators such as “greater”, “less”,
“or” and “not” must be available in the function.
Example: all events involving customers living less than 50km away from the
city centers of Brisbane, Sydney or Melbourne are grouped together (label =
“metropolitan”) as opposed to the others (label = “rural”).

C3. Time-interval-based correlation. This is a special kind of property-
based correlation. A timestamp is attached to an event and a corresponding
label is assigned to the event if the event happened within a given interval.
Example: all events that happen in July 2006 could be grouped together (e.g. la-
bel = “07/2006”) as opposed to those happening in August (label = “08/2006”).

Function-based correlation can be formalized in the following way: Let Label
be the set of all labels and F ⊆ {f | f : E → Label} a set of partial functions
assigning labels to an event. Then the set of sets of correlated events is {C ⊆
E | ∃l ∈ Label (∀e ∈ E [∃f ∈ F (l = f(e)) ⇔ e ∈ C])}.

This formalization uses one set of labels. However, in practice we would
distinguish between different types of labels, e.g. intervals, product groups.

As an extension to function-based correlation relationships between the labels
can be considered (RL ⊆ Label × Label). E.g. we could assume a hierarchical
order of keys where several keys have a common super-key. In this case events
could be grouped according to their keys attached as well as according to some
super-key higher up in the hierarchy. Let us assume e.g. a set of line items that
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all belong to the same order. In this example events could be grouped according
to the line item ID or according to the order ID.

3.2 Chained Correlation

The basic idea of chained correlation is that we can identify relationships be-
tween two events that have to be correlated (grouped together). This relationship
might be explicitly captured in an event’s attributes or might be indirectly re-
trieved by comparing attribute values of two events. Starting from these binary
relationships we can build chains of events that belong to the same group.

Since we assume that grouping events to process instances will mostly be
done by using unique identifiers, chained correlation becomes important mostly
for identifying conversations within our framework. In the case of conversations
we especially look at the relationships between message exchanges. Depending
on whether chained correlation is done based on message data or based on time,
we can identify two chained correlation mechanisms.

C4. Reference-based correlation. Two events are correlated, if the second
event (in chronological order) contains a reference to the first event. This means
that if there is some way of extracting a datum from the second event (by
applying a function) that is equal to another datum contained in the first event.
This datum therefore acts as a message identifier, and the second message refers
to this message identifier in some way.

C5. Moving time-window correlation. Two events involving the same actor
are related if they both have the same value for a given function (like in function-
based correlation) and they occur within a given duration of one another (e.g. 2
hours). There might be chains of events where the time passed between the first
and last event might be very long and others where this time is rather short.

Chained correlation can be formalized as follows: Let R ⊆ E × E be the
relations between two events that have to be grouped together. Then the set of
sets of correlated events is {C ⊆ E | ∀e1 ∈ C, e2 ∈ E [e1 R∗ e2 ⇔ e2 ∈ C]}.

3.3 Aggregation Functions

Sometimes only a limited number of events are grouped together although ac-
cording to function-based or chaining correlation mechanisms more events would
fulfill the criteria to be part of the group. For example, only a maximum number
of 10 items are to be shipped together in one container. More items are requested
to be shipped and might have the same destination or arrive timely according
to the defined moving time window.

In this paper, we do not deal with correlation mechanisms that include such
maximality requirements. We envisage that the framework could be extended
to capture such scenarios by means of an aggregation function agg that takes
as input a set of correlated events and produces a boolean (i.e. agg : ℘(E) →
{true, false}). A correlation scheme could then be constrained to only produce
sets of events that satisfy a given aggregation function.



8 Alistair Barros, Gero Decker, Marlon Dumas, Franz Weber

4 Conversation Patterns

The Service Interaction Patterns proposed in [6] describe recurrent interaction
scenarios within one conversation. The following patterns focus on relationships
between different conversations.

C6. Conversation Overlap. Some interactions belong to multiple conversa-
tions. Each conversation also contains interactions that are not part of others.
Example: during a conversation centering around delivery of goods a payment
notice is exchanged. This payment and other payments is the starting point for
a conversation centering around the payment.
Two conversations C1, C2 overlap if C1 ∩ C2 6= ∅ ∧ C1 \ C2 6= ∅ ∧ C2 \ C1 6= ∅.
C7. Hierarchical Conversation. Several sub-conversations are spawned off
and merged in a conversation. The number of sub-conversations might only be
known at runtime.
Example: as part of a logistics contract negotiation between a dairy producer
and a supermarket chain a set of shippers are to be selected for transporting
goods from the producer to the various intermediate warehouses of the chain.
Therefore, negotiation conversations are started between the chain and each
potential available shipper.
A conversation C1 ∈ Conv has two sub-conversations C2, C3 ∈ Conv if ∃Cp ∈
Conv (C1, C2, C3 ⊂ Cp ∧ ∀e2 ∈ C2, e3 ∈ C3 [∃e11, e12 ∈ C1 (e11 < e2 ∧ e11 <
e3 ∧ e2 < e12 ∧ e3 < e12)]).

C8. Fork. A conversation is split into several conversations and is not merged
later on. The number of conversations that are spawned off might only be known
at runtime.
Example: an order is placed and the different line items are processed in parallel.
A split from a conversation C1 ∈ Conv into the two conversations C2, C3 ∈ Conv
occurs if ∃Cp ∈ Conv (C1, C2, C3 ⊂ Cp ∧ ∀e1 ∈ C1, e2 ∈ C2, e3 ∈ C3 [e1 <
e3 ∧ e1 < e2]).

C9. Join. Several conversations that do not originate from the same fork are
merged into one conversation. The number of conversations that are merged
might only be known at runtime.
Example: several orders arriving within one week are merged into a batch order.
A join between two conversations C1, C2 ∈ Conv into one conversation C3 ∈
Conv occurs if ∃Cp ∈ Conv (C1, C2, C3 ⊂ Cp ∧ ∀e1 ∈ C1, e2 ∈ C2, e3 ∈ C3 [e1 <
e3 ∧ e2 < e3]).

C10. Refactor. A set of conversations is refactored to another set of conver-
sations. The numbers of conversations that are merged and spawned off might
only be known at runtime. This pattern generalizes Fork and Join.
Example: goods shipped in containers on different ships have reached a harbor
where they are reordered into trucks with different destinations.
A refactoring from two conversations C1, C2 ∈ Conv into the two conversations
C3, C4 ∈ Conv occurs if ∃Cp ∈ Conv (C1, C2, C3, C4 ⊂ Cp ∧ ∀e1 ∈ C1, e2 ∈
C2, e3 ∈ C3, e4 ∈ C4 [e1 < e3 ∧ e1 < e4 ∧ e2 < e3 ∧ e2 < e4]).
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5 Process Instance to Conversation Relationships

We assumed so far that conversations and process instances are orthogonal con-
cepts and that groupings can be done independently from each other. This is
only partly true. The normal case is that a process instance is involved in one
or several conversations and according to which conversation an event belongs
to the event is assigned to a particular process instance. Or it is the other way
round that an event belonging to the same process instance like a previous event
might be assigned to the same conversation.

For clarifying this situation we describe the most important relationships
between process instances and conversations. For the first time we use the notion
of actors that are part of the framework. We assume that a process instance is
executed by exactly one actor and therefore introduce the auxiliary relation
≈∈ ℘(AE)× ℘(AE) where p1 ≈ p2 means that the process instances p1 and p2

are executed by the same actor.
Furthermore, we introduce the auxiliary relation � ⊆ ℘(CE) × ℘(AE) indi-

cating that at least one event in a conversation C is causally related to at least
one event in a process instance p. � = {(C, p) ∈ ℘(CE)× ℘(AE) | ∃e1 ∈ C e2 ∈
p (e1 <c e2 ∨ e2 <c e1)}.

C11. One Process Instance – One Conversation. A process instance is in-
volved in exactly one conversation and there is no other process instance involved
in it and executed by the same actor.
Example: a purchase order is handled within one process instance.
A one-to-one mapping for a process instance p ∈ PI to conversation C ∈ Conv
occurs if p�C∧∀q ∈ PI [(p 6= q∧p ≈ q) ⇒ ¬q�C] ∧∀D ∈ Conv [C 6= D ⇒ ¬p�D].

C12. Many Process Instances – One Conversation. Several process in-
stances executed by the same actor are involved in the same conversation.
Example: an insurance claim is handed over from the claim management de-
partment to the financial department. The different departments have individual
process instances to handle the case.
A many-to-one mapping for a set of process instances PI ′ ⊆ PI to conversation
C ∈ Conv occurs if ∀p1, p2 ∈ PI ′ [p1 ≈ p2] ∧ ∀p ∈ PI ′ [p � C].

C13. One Process Instance – Many Conversations. One process instance
is involved in many conversations.
Example: a seller negotiates with different shippers about shipment conditions
for certain goods. The shipper offering the best conditions is selected before
shipment can begin.
A one-to-many mapping for a process instance p ⊆ PI to a set of conversations
Conv′ ∈ Conv occurs if ∀C ∈ Conv′ [p � C].

We can refine this pattern by looking at the relationship between individual
sub-process instances (threads) and the conversations. p1 ∈ PI is a sub-process
instance of p2 ∈ PI if all events in p1 are contained in p2: p1 ⊆ p2. Having
identified all sub-processes instances we can then analyze if they conform to one
of the three mapping patterns.
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C14. Initiate Conversation. A process instance has the role of the initiator
of a conversation if the conversation is started within the process instance.
Example: a buyer places a purchase order and triggers a conversation concern-
ing the negotiation about the price.
A process instance p ∈ PI is an initiator of a conversation C ∈ Conv if ∃e1 ∈
p e2 ∈ C (e1 <c e2 ∧ ¬∃f ∈ C (f < e2)).

C15. Follow conversation. A process instance p has the role of a follower
in a conversation it participates in, if the conversation was created within an-
other process instance. Process instance p may be created because of a message
received in the context of the conversation in question.
Example: a shipping order that is part of a multi-party conversation for procur-
ing some products comes in to a shipment process and is processed in a new
instance of this process.
A process instance p ∈ PI is a follower in a conversation C ∈ Conv if ¬∃e1 ∈
p e2 ∈ C (e1 <c e2∧¬∃f ∈ C (f < e2)). A process instance is created because of
a message in a conversation if ∃e1 ∈ p e2 ∈ C (e2 <c e1 ∧ ¬∃g ∈ p \C (g < e1)).

C16. Leave Conversation. A process instance decides to no longer take part
in a conversation.
Example: a carrier can no longer commit to delivery request and terminates
involvement in a shipment contract.

To formalize this pattern we introduce the notion of action event types and
conversation types. Functions AET : AE → Type and CT : ℘(CE) → Type
assign a type to each action event and conversation. Leave Conversation occurs
if leave ∈ Type is the event type corresponding to leave actions and lc ∈ Type is
the type of conversation that is to be left and for all possible process instances
p: ¬∃e1, e2 ∈ p e3 ∈ CE (AET (e1) = leave ∧ e1 < e2 ∧ CT (e3) = lc ∧ e3 < e2).

C17. Multiple Consumption. A communication event is consumed several
times by one or many process instances.
Example: an account detail change is requested by a supplier and immedi-
ately processed. As part of a more complex fraud pattern this request leads to
investigating potential fraud.
A communication event c is consumed several times if ‖{e ∈ AE | c <c e}‖ > 1.

C18. Atomic Consumption. One action event is caused by several communi-
cation actions.
Example: a new shipment is started as soon as 500 items with the same desti-
nation arrive.
An atomic consumption of a set of communication actions C ∈ ℘(CE) has
occurred if ∃e ∈ AE (∀c ∈ C [c <c e]).

6 Assessment of BPEL 1.1 and BPEL 2.0

In this section, we provide an assessment of BPEL 1.1 and 2.0 specifications for
support of the correlation patterns. Since BPEL directly concerns conversational
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processes, it provides a more comprehensive insight into the capabilities of Web
services middleware for correlating events through process instances and con-
versations than standards at lower levels of the WS stack. Table 1 summarizes
the assessment, where “+” indicates direct support for a pattern, “+/–” partial
support and “–” no support.

The mechanism in BPEL for supporting identification of properties with
messages, and relating these to processes and conversations, is a correlation set.
A correlation set is implemented as special fields (of simple XML types) in a
WSDL specification, and a message can carry tokens of one or more correla-
tion sets. BPEL inbound and outbound message activities (e.g. invoke, receive,
reply, onMessage, pick) specify one or more correlation sets conveying relevant
correlation tokens inside the message.

A process starts a conversation by sending a message and thus defines the
values of properties in a correlation set, that serves to identify the communi-
cation actions within a process instance that belong to a given conversation.
The conversation is propagated by other processes receiving messages contain-
ing values of the correlation set. When a message is received which has the same
value for a correlation set as the value of a message previously sent by a run-
ning conversation, the message in question is associated with this conversation.
Immediately we can see that key-based correlation is supported. However, only
equality applies so property-based correlation is not supported, and no explicit
support is available for time-interval based correlation.

From a post-mortem perspective, each message produced or consumed by the
service can be related to a conversation as follows: the message log is scanned
in chronological order, and a message is either related to a new conversation if
it corresponds to a communication action that initializes a correlation set, or is
related to a previously identified conversation if the values of its correlation set
match those of a message sent by the previous service conversation.

Explicit support for reference-based correlation is possible when WS-
Addressing is used for SOAP message exchange by BPEL processes. In the WS-
Addressing standard, a message contains an identifier (messageID header) and
may refer to a previous message through the relatesTo header. If we assume
that these addressing headers are used to relate messages belonging to the same
conversation in a chained manner, it is possible to group a service log contain-
ing all the messages sent or received by a service into traces corresponding to
conversations. Similarly, correlations can be made through the replyTo header
of a given message (say M), containing an URI uniquely identifying a message
in question. When another message M ′ is observed that has the same URI this
time in the To header, M and M ′ can be correlated.

Chaining through sliding windows, addressed in the moving time-window cor-
relation pattern, cannot be supported through BPEL. Sliding windows require
that events are buffered, however this aspect is left open in the BPEL specifica-
tions. A hand-coded solution is to implement buffering through one (continuously
running) process instance. However, in the context of complex event composi-
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tions, the loss of a declarative approach leads convoluted code and does not scale
for high-performance environments.

Conversation overlap can be seen through different correlation sets used in
related message activities of two processes. By way of illustration, consider a pro-
cess that initiates a conversation through an invoke, which has a corresponding
receive in the participant, having the same correlation set (e.g. PurchaseOrder)
as the invoke. Through subsequent message exchanges, reference to a different
correlation set is made (e.g. Invoice), providing new data to correlate a different
conversation between the two processes. In fact, different conversations may be
observed at the outset of a conversation through a request-response invoke - that
has different correlation sets.

For conversational structuring, BPEL 1.1 and BPEL 2.0 have a major differ-
ence. Both of them allow correlation sets to be defined not only on a per scope
basis. However, in BPEL 1.1, either the number of sub-conversations has to be
known at design-time (one branch of a “parallel flow” is assign to each conversa-
tion), or the conversations in question must be entertained one after the other as
opposed to concurrently. In BPEL 2.0, a “parallel foreach” construct, allows an
unbounded number of conversations to be entertained concurrently. As such, we
can see that hierarchical conversation, conversation fork and conversation join
can be fully supported in BPEL 2.0, though only partially supported in 1.1.

The number of correlation sets in and across process instances, straightfor-
wardly allows different conversation cardinalities: one process instance – one
conversation, many process instances – one conversation and one process in-
stance – many conversations are thus supported.

A process can initiate a conversation, if in its initial invoke, the correlation
set’s initiate attribute is set to “yes” (with the initiate attribute in the corre-
sponding receive in the participant also set to “yes”). All subsequent message
actions of the initiator should have the initiate attribute be set to “no” to enforce
the pattern’s constraint that the process is not part of any other conversation.
Similarly, a process instance follows a conversation when one of its message re-
ceive actions initiates a correlation set, thus signifying that the process instance
becomes aware of a conversation. All subsequent message actions referring to
this correlation set should have the initiate attribute be set to “no”.

For Leave Conversation, in BPEL 1.1 unsubscription from a conversation
cannot be expressed. Once values are given to a correlation set, a subscription
for corresponding messages exists until the process instance terminates. In the
case of BPEL 2.0 subscription ends as soon as the execution of the scope where
a correlation set is defined is closed.

One source of limitation of BPEL with respect to correlation, is the fact that
every message arriving at a port is eagerly correlated to a process instance. In
other words, when a message addressed to a Web service is received by the BPEL
engine, its headers and contents are inspected and the message is consumed
immediately for instance creation or instance routing, or it is rejected.

This model is not suitable to capture scenarios where correlation can not be
determined on a per-message basis, as in the case of the atomic consumption pat-
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tern. Consider the following, complex example: A shipment aggregation service
receives shipment requests from multiple customers, and where possible, aggre-
gates them into a single route. When the service receives a shipment request,
two scenarios are possible depending on the destination (e.g. town or suburb):
(i) if there is no pending request for the same destination, a new bundle for this
destination is created; otherwise, the request is assigned to the existing bundle
for that destination. When there are more than a given amount of shipment
requests with the same destination, the corresponding bundle is closed and a
delivery route is assigned to it. Subsequent messages to the same destination are
then assigned to another bundle. If a bundle has been open for more than a given
time window, it is escalated to a human operator. Thus, shipment requests are
aggregated in bundles based on their destination, until a bundle either reaches
a given size (e.g. 10 requests per bundle) or a given age (e.g. 4 hours).

In this scenario, when a shipment request is received and no existing request
for that destination is awaiting correlation, the message is buffered. It is only
later, once the timeout has expired or the threshold has been reached, that a
process instance is created to deal with either that request alone, or a combina-
tion of requests with the same destination. Thus, BPEL cannot support multiple
consumption or atomic consumption. Note that proprietary engines supporting
BPEL, such as SAP’s ccBPM, support these patterns.

In addition to languages for describing individual conversational services, a
new viewpoint was put forward for capturing conversations from a global point
of view. Choreography languages describe message exchanges as seen by an ideal
observer. The Web Services Choreography Description Language (WS-CDL [3])
is the most prominent example for such a language and also includes the notion
of correlation. It uses equality of identitiy tokens for identifying conversations.
Therefore, WS-CDL directly supports key-based correlation but does not sup-
port property-based correlation. WS-CDL can also be used in combination with
WS-Addressing leading to direct support for reference-based correlation. The
timeout attribute for interactions realizes both time-interval-based correlation
and moving time-window correlation. As WS-CDL only sees the time relations
between message exchanges from a global perspective, it is out of the scope of
WS-CDL how the individual participants handle the required message buffering.

Conversation overlap can be realized in WS-CDL through the use of several
sets of identity tokens. However, like it was the case for BPEL 1.1 there is only
partial support for hierarchical conversation, conversation fork and conversation
join because only a bounded number of parallel branches is supported in WS-
CDL. As WS-CDL does not deal with the internals of the interacting services,
the notion of process instance is absent in WS-CDL. Therefore, the patterns
from section 5 are irrelevant in the case of WS-CDL.

7 Related Work

At least two programming languages for Web Service developments propose
alternative correlation mechanisms to BPEL’s one: XL [8] and GPSL [9]. XL
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directly supports the concept of conversation. Conversations are identified by
unique URIs that are included in a SOAP header (similar to WS-Addressing
“relatesTo” header). Conversation patterns define when should new conversa-
tion URIs be created versus when should existing conversation URIs be reused.
With respect to BPEL, XL adds a concept of conversation timer which can deal
with our time-interval-based correlation pattern. A conversation timer is armed
when a service receives the first message related to a conversation: If a message
is received by the service after the timeout, this message is treated as part of a
new conversation. Arguably, one can achieve a similar effect in BPEL 2.0 using
scoped correlation sets combined with alarms and faults, but this would require
convoluted code. On the other hand, XL suffers from similar limitations as BPEL
when it comes to dealing with multiple consumption and atomic consumption.

GPSL on the other hand relies on the concept of join pattern to capture cor-
relation scenarios such as the shipment aggregation service above. A join pattern
is a conjunction of message channels and a filtering condition: when messages
are received over a channel they are stored in a buffer until there is a join pattern
consuming them. For a join pattern to fire, there must be a combination of mes-
sages (one per channel in the join pattern) which satisfies the filter. This feature
corresponds to the “atomic consumption” pattern. Timeouts are conceptually
treated as messages coming from a “timer service”, thus enabling time-interval-
based correlation. Also, GPSL deals with “multiple consumption” by allowing a
service to send (or re-send) a message to itself: so once a message is consumed,
the service can put it back again in the corresponding channel.

Concepts similar to join patterns have been considered in the context of
complex event processing [5], where they are called event patterns. IBM’s Active
Correlation Technology [10] for example, provides a rule language to capture
event patterns such as “more than four events of a given type happen in a
sliding window of 30 seconds”. Event rule languages can capture arbitrarily
complex correlation patterns. But the question that we attempt to answer is:
how much of this event correlation technology is needed in SOA?

In the broader context of enterprise applications, the issue of identifying
patterns of correlation has been considered in [11]. However, this work only
considers reference-based correlation as supported by WS-Addressing.

8 Conclusion and Outlook

This paper introduced a framework for classifying and describing correlation sce-
narios in SOAs, with an emphasis on stateful services that engage in long-running
business transactions. Using this framework, we described a set of patterns that
can be used to evaluate the correlation mechanisms of standards and tools for
service implementation. In particular, we evaluated two successive versions of
BPEL and showed that, while the later version supports a larger set of correla-
tion patterns than the earlier, it still does not support certain patterns due to
its approach of correlating and consuming messages immediately upon receipt,
as well as its inability to deal with time as a factor in determining correlation.
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The framework points into the direction of patterns of relationships between
process instances. In many scenarios, different process instances compete for
the same messages, thus creating dependencies between them. A classification
and in-depth study of these dependencies constitutes an avenue for future work.
Furthermore, the framework can be extended to cover more sophisticated cor-
relation patterns such as those found in the area of complex event processing.
An extended version of the framework could provide a basis for evaluating the
correlation mechanisms of languages and systems for event processing in general.
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