
Service Interaction Modeling: Bridging Global and Local Views

Johannes Maria Zaha∗, Marlon Dumas†, Arthur ter Hofstede
Queensland University of Technology, Brisbane, Australia

(j.zaha,m.dumas,a.terhofstede)@qut.edu.au

Alistair Barros
SAP Research Centre, Brisbane, Australia

alistair.barros@sap.com

Gero Decker‡

Hasso-Plattner-Institute, Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

Abstract

In a Service-Oriented Architecture (SOA), a system is
viewed as a collection of independent units (services) that
interact with one another through message exchanges. Es-
tablished languages such as the Web Services Description
Language and the Business Process Execution Language
allow developers to capture the interactions in which an
individual service can engage, both from a structural and
from a behavioral perspective. However, in large service-
oriented systems, stakeholders may require a global pic-
ture of the way services interact with each other, rather
than multiple small pictures focusing on individual services.
Such “global models” are especially useful when a set of
services interact in such a way that none of them sees all
messages being exchanged, yet interactions taking place be-
tween some services affect the way other services interact.
An issue that arises when dealing with global models of ser-
vice interactions is that these models may capture behav-
ioral constraints that can not be enforced locally. In other
words, some global models may not be translatable into a
collection of local models such that the sum of the local
models equals the original global model. Starting from a
previously proposed language for global modeling of ser-
vice interactions, this paper defines an algorithm for de-
termining if a global model is locally enforceable and an
algorithm for generating local models from global ones.

1 Introduction

As the first generation of web service technology based
on XML, SOAP, and WSDL reaches a certain level of matu-

∗Funded in part by SAP
†Funded by a “Smart State” Fellowship co-sponsored by Queensland

Government and SAP
‡Research conducted while with SAP Research Centre Brisbane

rity, a second generation targeting long-running collabora-
tive business processes is gestating. In the first generation,
web services are equated to sets of operations and message
types (cf. WSDL). This conception reflects an emphasis on
single request-response interactions. Meanwhile, the sec-
ond generation of web service technology targets conversa-
tional interactions, with service descriptions capturing not
only individual message exchanges and the underlying mes-
sage types, but also dependencies between these exchanges,
most notably behavioral dependencies.

This trend is evidenced by the emergence of languages
for modeling and implementing services that can engage
in conversational interactions. These languages include
the Business Process Modeling Notation (BPMN) [15] and
the Business Process Execution Language for Web Ser-
vices (BPEL) [1], which respectively target the design
and the implementation phases of service development.
Other language definition initiatives in this space are the
Web Services Choreography Description Language (WS-
CDL) [10] and variants of UML Activity Diagrams such
as BPSS/ebBP [6] and UML Profile for EDOC [12].

An analysis of approaches to conversational service
modelling unveils two different approaches. On the one
hand, interactions between conversational services can be
modeled from the perspective of individual services, that is,
each individual service model defines the set of messages
that the service in question can send and receive; individual
models are then “stitched together” to capture conversations
between multiple services. This approach is suitable when
the goal is to build individual services or to service-enable
an existing application. However, during the early phases of
the service development lifecycle, emphasis is not on build-
ing individual services but rather on identifying potential
services and understanding and analyzing their interactions.
In these phases, stakeholders need a global picture of the
way services interact with each other. Thus, models at this
level need to emphasize the interactions between services



and their interdependencies. Such “global models” are es-
pecially useful when a set of parties interact in such a way
that none of them sees all messages being exchanged, yet
interactions taking place between some parties have an im-
pact on the way other parties interact. WS-CDL is a typical
example of a language for describing global models of ser-
vice interactions (also known aschoreographies).

Given their complementarity, an approach to conversa-
tional service modeling that seamlessly integrates global
and local views, is desirable. In previous work [17], we
introduced a language, namely “Let’s Dance”, for mod-
eling service interactions and their behavioral dependen-
cies. Let’s Dance supports service interaction modeling
both from a global and from a local viewpoint. In a global
(or choreography) model, interactions are described from
the viewpoint of an ideal observer who oversees all inter-
actions between a set of services. On the other hand, lo-
cal models focus on the perspective of a particular service,
capturing only those interactions that directly involve it. A
possible usage scenario is one where global models are pro-
duced by analysts to agree on interaction scenarios from a
global perspective, while local models are produced dur-
ing system design and handed on to implementers. Imple-
menters then refine the local models and/or use them to gen-
erate code templates (e.g. in BPEL). To ensure proper han-
dover between these users, it is necessary to have a mapping
from global to local models and/or to be able to check that
a local model is consistent with a global one.

It turns out that not all global models can be mapped
into local ones in such a way that the resulting local models
satisfy the following two conditions: (i) they contain only
interactions described in the global model; and (ii) they are
able to collectively enforce all the constraints expressed in
the global model. For example, consider a global interac-
tion model containing: (i) a first interaction where an actor
A sends a message to an actor B; (ii) a second interaction
where an actor C sends a message to an actor D; and (iii)
a constraint to the effect that the second interaction can not
occur before the first one. An obvious question arises then:
How can actors C and/or D know that the interaction be-
tween A and B has taken place in the absence of any in-
teraction between actors A and B on the one hand, and ac-
tors C and D on the other? Thus, either the model needs to
be enhanced with an interaction between A/B and C/D, or
the sequential execution constraint will not be enforced. In
WS-CDL, constraints that can not be enforced using the ex-
plicitly declared interactions are enforced by implicit inter-
actions. Since we envisage business analysts “signing off”
on global models defined in Let’s Dance, we consider the
option of introducing such “hidden interactions” implausi-
ble. Hence, tools for global service modeling need to ensure
that global models are “locally enforceable”, meaning that
they can be translated into sets of local models satisfying

the two conditions above. This paper presents an algorithm
for determining whether or not a global model expressed in
Let’s Dance is locally enforceable. The paper also provides
an algorithm to translate global models into local ones.

The paper is structured as follows. Section 2 gives an
overview of the Let’s Dance language. Sections 3 and 4
respectively present the algorithms for determining the lo-
cal enforceability of global models and for generating lo-
cal models from global models. Section 5 discusses related
work and Section 6 concludes.

2 Language Overview

Let’s Dance abstracts away from implementation details
and avoids reliance on imperative programming constructs.
In particular, the language does not rely on variable as-
signment, while conditions need not be written in an exe-
cutable language. Instead, these are treated as free-text la-
bels that are subsequently refined. Still, models defined in
Let’s Dance can be used to generate BPEL templates or to
check that a service implementation conforms to the behav-
ioral constraints captured in a model. This section provides
an overview of Let’s Dance. A more detailed description
of Let’s Dance and solutions for the service interaction pat-
terns presented in [2] can be found in [17].

2.1 Language Constructs

A choreography consists of a set of interrelated service
interactions corresponding to message exchanges. At the
lowest level of abstraction, an interaction is composed of a
message sending action and a message receipt action (re-
ferred to as communication actions). Communication ac-
tions are represented by non-regular pentagons (symbol
for send and for receive) that are juxtaposed to form a
rectangle denoting an elementary interaction. As illustrated
in Figure 1, a communication action is performed by an ac-
tor playing a role, specified at the top corner of a communi-
cation action. Roles are written in uppercase and the actor
playing this role (the “actor reference”) is written in lower-
case between brackets. The name of the message type for
the receive actions can be omitted (since the same type ap-
plies for both send and receive).

Figure 1. Constructs of Let’s Dance

2



Interactions can be inter-related using the constructs de-
picted in Figure 1. The relationship on the left-hand side
is called “precedes” and is depicted by a directed edge: the
source interaction can only occur after the target interac-
tion has occurred. That is, after the receipt of a message
“M1” by “B”, “B” is able to send a message “M2” to “C”.
The rectangle surrounding these two interactions denotes a
composite interaction, which can be related with other in-
teractions with any type of relationship. The relationship
at the center of the figure is called “inhibits”, depicted by
a crossed directed edge. It denotes that after the source in-
teraction has occurred, the target interaction can no longer
occur. That is, after “B” has received a message “M1” from
“A”, it may not send a message “M2” to “C”. The latter
interaction can be repeated until “x” messages have been
sent, which is indicated by the header on top of the interac-
tion. The actor executing the repetition instruction is noted
in brackets. Finally, the relationship on the right-hand side
of the figure, called “weak-precedes”, denotes that “B” is
not able to send a message “M2” until “A” has sent a mes-
sage “M1” or until this interaction has been inhibited. That
is, the target interaction can only occur after the source in-
teraction has reached a final status, which may be “com-
pleted” or “skipped” (i.e. “inhibited”). In the example, the
upper interaction has a guard assigned, which is denoted by
the header on top of the interaction. This interaction is only
executed if the guard evaluates to true. The actor who eval-
uates the guard is noted in brackets.

2.2 Example

An example of a choreography corresponding to a loan
application process is depicted in Figure 2. A client “c”
sends a (loan) application to the loan department “l” of a
financial institution. Once this interaction is completed, a
composite interaction is enabled. This composite interac-
tion contains two guarded sub-interactions. The two ele-
mentary interactions on the left-hand side take place only if
a credit check is requested. If so, the loan department sends
a message “check credit” to the Bureau of Credit Regis-
tration (BCR) and receives the credit information for the
requested client. If no credit check is requested and the
guard evaluates to false, both elementary interactions are in-
hibited. The two elementary interactions on the right-hand
side are executed only if the loan department requests an op-
tional insurance. Since a composite interaction is completed
if all sub-interactions have been executed or inhibited, the
succeeding interactions are enabled even if both guards in-
side the composite interaction evaluate to false. For con-
necting the two following interactions with the composite
interaction, a connector has been used for multiple arrows.
The loan department either sends a rejection of the applica-
tion to the client or issues a request for payment with the

payment department, whereby here a two-way inhibits re-
lationship is used. If a request for payment is issued, pay-
ment notifications for each of the accounts nominated by
the client are sent. This is captured through the repetition of
the interaction using an (informally) specified condition in
the box at the top corner of the interaction.

Figure 2. Choreography of a loan application

Figure 3. Local model for the client

Figure 3 shows the loan application choreography from
the view of the actor “c”, playing the role of a client. This
local model starts with an interaction for the client send-
ing an application to the loan department, followed by the
receipt of either a rejection or payment notifications. The
two-way inhibits relationship is a derived relationship that
does not explicitly appear in the global model (i.e. it is a
“derived” relation). The same holds for the precedes rela-
tionship that connects to the interaction for sending the pay-
ment notifications, since the client is not involved in any in-
teraction occurring between these two. This illustrates that
local models may reflect relationships that are derived from,
but not explicitly represented in the global model.

3



2.3 Abstract Syntax

The abstract syntax of the language is formally captured
by the following definition of a Let’s Dance choreography.
Definition 1. A Choreography(or Global Model) is a tu-
ple (I , RI , GI , A, c0, Precedes, WeakPrecedes, Inhibits,
Parent , Performs) such that:(a) I is a set of Interactions;
(b) E is a set of Expressions;(c) RE⊆ S is a set of Repeat-
Expressions;(d) GE⊆ S is a set of Guard-Expressions;(e)
A is a set of Actors;(f) c0 ∈ I is the top-level interaction of
the choreography;(g) Precedes, WeakPrecedes, Inhibits⊆
I × I are three binary relations over the set of interactions
I; (h) Parent⊆ I × I is the relation between interactions
and their direct sub-interactions;(i) Assignments⊆ I × E
is the relation between interactions and expressions;(j) Per-
forms: I → ℘(A) is a partial function linking interactions to
actors;(k) Conducts: S→ ℘(A) is a partial function linking
expressions to actors.

In the following definition, the symbolAncestor denotes
the transitive closure of relationParent , i.e. Ancestor =
Parent+. The setsRI ⊆ I and GI ⊆ I are used as abbre-
viations for Repeated Interactions and Guarded Interactions
respectively and are defined as follows:

• RI = {r ∈ I | ∃e ∈ RL [(r, e) ∈ Assignments]}

• GI = {g ∈ I | ∃e ∈ GL [(g, e) ∈ Assignments]}

The definition of a well-formed choreography below
captures certain syntactic constraints that exclude some in-
correct choreographies. In the rest of the paper, we assume
all choreographies to be well-formed.
Definition 2. A choreographyC = (I , RI , GI , A,
c0,Precedes,WeakPrecedes, Inhibits,Parent ,Performs)
is well-formed if:

• c0 has no parent:¬∃i ∈ I[i Parent c0]

• Each interaction other than the root has one and only
one parent:∀i ∈ I \ {c0} ∃!j ∈ I[j Parent i]

• No relation that starts inside a repeated (composite) in-
teraction crosses the boundary of this interaction:
∀i, j ∈ I ∀k ∈ RI[(k Ancestor i ∧ (i Precedes j ∨ i
WeakPrecedesj ∨ i Inhibits j))
→ k Ancestor j]

• There are no “precedence dependencies” be-
tween ancestors and descendants:Ancestor ∩
(Precedes∪WeakPrecedes) = ∅

• There are no cyclic precedence dependencies:
Precedes∪WeakPrecedes∪Parent is acyclic

• An interaction involves at most two actors:∀i ∈ I[1 ≤
|Performs(i)| ≤ 2]

3 Local Enforceability

As previously discussed, a choreography may include re-
lationships that are not locally enforceable. Figure 4 shows
a sample choreography with non-locally enforceable rela-
tionships.

Figure 4. Non-enforceable choreography

The precedes relationship between the two elementary
interactions on top of the figure is not enforceable. This
relationship denotes that the sending of a message “M2”
can only occur after the sending of a message “M1” (as
perceived by an ideal global observer). Since every com-
munication action is carried out by a different actor, it is
not possible for actors “c1” or “d1” to know when has a
message “M1” been sent. On the other hand, the two-way
inhibits relationship between the interactions labeled “M1”
and “M3” is enforceable, since there are two common ac-
tors performing these interactions, namely “a1” and “b1”,
and these actors can enforce the inhibits relationship in their
respective local models. The same holds for the precedes
relationship connecting the interactions labeled “M3” and
“M4”. These two interactions only share one common ac-
tor, namely “a1”, but since “a1” will not start sending a
message “M4” until it has received a message “M3”, the
precedes relationship can be enforced in the local model
of “a1”. The source and target interactions of the weak-
precedes relationship at the bottom of the figure also share
a common actor, namely “e1”. Nevertheless this relation-
ship is not enforceable. Indeed, according to the meaning
of the weak-precedes relation, message “M5” may need to
be exchanged even if the source interaction of the weak-
precedes relationship has been skipped. Thus, “e1” needs
to know when this source interaction is skipped. In the de-
picted choreography the source interaction will be skipped
if the interaction labeled “M1” occurs, because in this case
the interaction labeled “M3” and therewith also the inter-
action labeled “M4” will never occur due to the inhibits
relationship. Since “e1” is not involved in the interaction
labeled “M1”, it will never know that the source interaction
of the weak-precedes relationship has been skipped. The
situation would be different if the interaction labeled “M2”
was performed by “b1” and “e1”. In this case “e1” would

4



know that the interaction for sending a message “M4” has
been skipped, as soon as it sees a message “M2”, and thus
“e1” can enforce the weak-precedes relationship.

The above example illustrates the main issues for check-
ing enforceability. In this section, we present an algorithm
for checking the local enforceability of relationships be-
tween elementary interactions. This algorithm relies on
two auxiliary algorithms: (i) an algorithm for “expanding”
a choreography into an equivalent choreography in which
every relationship involves only elementary interactions (as
opposed to composite interactions); and (ii) an algorithm
for detecting interactions in a choreography that will never
be executed due to conflicting relationships in the chore-
ography. The definitions of these algorithms rely on the
following notations:

• EI ⊆ I is the set ofElementary Interactions
EI = {i ∈ I | ¬∃j[i Parent j]}

• CI ⊆ I is the set ofComposite Interactions
CI = I \ EI

• Parent(i) is the parent of interactioni
∀i ∈ I \ {c0} Parent(i) = the only element in the set
{p ∈ I | p Parent i}

• Ancestors(i) is the set of ancestors ofi
Ancestors(i) = {a ∈ I | a Parent+ i}

• Initial : CI → ℘(EI ) computes the set of elementary
interactions in a composite interaction that are not tar-
get of control dependencies from other interactions in
the same composite interaction:
Initial(ci) = {ei ∈ EI | ci Ancestor ei ∧
¬∃k,m ∈ I[ci Ancestor k ∧ (k,m) ∈ Precedes ∪
WeakPrecedes ∧ (m Ancestor ei ∨m = ei)]}

• Final : CI → ℘(EI ) computes the set of elementary
interactions in a composite interaction that are not the
source of control dependencies leading to other inter-
actions in the same composite interaction:
Final(ci) = {ei ∈ EI | ci Ancestor ei ∧
¬∃k,m ∈ I[(ci Ancestor k) ∧ (m, k) ∈
(Precedes∪WeakPrecedes) ∧ (m Ancestor ei ∨m =
ei)]}

3.1 Choreography expansion

The algorithm for expanding composite interactions is
presented in Figure 5. This algorithm first adds every pair
of interactions to the set of precedes relationships that has
a composite interaction in between and where there exists
a consecutive set of precedes relationships connecting these
three interactions. This auxiliary construct is introduced in
order to detect the enforceability of expanded interactions,
introduced below. After that the relationships originating
from a composite interaction are treated. Lines 2 to 7 of the

algorithm denote the substitution of all relationships which
source is a composite interaction. A composite interaction
is completed if all sub-interactions have been completed or
inhibited. Thus, a synchronization point in form of an inter-
actionSyncc,j has to be added in order to be able to define
weather the composite interaction has been completed or
not. Thus, the actors executing the communication actions
of this interaction have to be the common actors of all fi-
nal interactions of the composite interaction and the actors
executing the interaction that is the target of the relation-
ship in question. It might be that there exists no common
actor executing these interaction. In this case there is no ac-
tor assigned, which will be discovered in the enforceability
algorithm presented later. In lines 6 and 7 new relation-
ship involving this synchronization point are established:
Syncc,j is the source of a new relationship of the consid-
ered type connecting to the target of the original relation-
ship. Moreover it is the target of weak-precedes relation-
ships from all final interactions of the considered composite
interaction. In line 8 all relationships of the considered type
which source is a composite interaction are deleted.

The second part of the algorithm deals with relation-
ships targeting a composite interaction. In lines 9 to 11 all
precedes- and weak-precedes relationships which target is a
composite interaction are substituted. When a composite in-
teraction is enabled, its initial sub-interactions should be en-
abled. Thus, precedes- and weak-precedes relationships are
substituted with relationships of the respective type from the
source of the original relationship to the initial interactions
of the composite interaction. The last two lines of the algo-
rithm depict the substitution of inhibits relationships which
target is a composite interaction. In this case, the new re-
lationships are established to every sub-interaction of the
composite interaction.

3.2 Reachability analysis

Well-formed choreographies in Let’s Dance may con-
tain unreachable interactions, that is, interactions that will
never occur in any execution of the choreography. The
presence of unreachable interactions makes the analysis of
choreographies (e.g. checking for local enforceability) more
difficult. Choreographies containing interactions with un-
reachable interactions are semantically incorrect, and it is
thus normal to expect that they should be corrected prior to
analysing them further in view of generating local models.
Three patterns lead to an interactioni being unreachable.

1. Two interactions with vice-versa inhibits relations pre-
cedei (Figure 6(a)).

2. An interaction precedingi, inhibits i (Figure 6(b)).

3. An interactionj that always executes inhibitsi and
there is also a path of precedes and weak-precedes re-
lations from that interaction toi (Figure 6(c)).

5



1: Precedes := Precedes ∪ {(i, j) ∈ I × I | ∃k ∈ CI [i Precedes k ∧ k Precedes∗ j]}
2: for eachR ∈ {Precedes,WeakPrecedes, Inhibits}
3: for each (c, j) ∈ R where c ∈ CI
4: I := I ∪ {Syncc ,j} (*this creates a new interactionSyncc ,j *)
5: Performs(Syncc ,j ) := {a ∈ Actors | (∀f ∈ Final(c)[a ∈ Performs(f )]) ∧ a ∈ Performs(j )}
6: R := R ∪ {(Syncc ,j , j) | c R j}
7: WeakPrecedes:= WeakPrecedes∪{(i,Syncc ,j ) | i ∈ Final(c)}
8: R := R \ (CI × I)
9: for eachR ∈ {Precedes,WeakPrecedes}
10: R := R ∪ {(i, j) ∈ I × I | ∃a ∈ Ancestors(j) ∧ j ∈ Initial(a) ∧ i R a}
11: R := R \ (I × CI )
12:Inhibits := Inhibits ∪ {(i, j) ∈ I × I | ∃a ∈ Ancestors(j)[i Inhibits a]}
13:Inhibits := Inhibits \ (I × CI )

Figure 5. Algorithm for expanding relationships involving composite interactions

Figure 6. Unreachable Interactions

An algorithm for detecting unreachable interactions is
presented in Figure 7. This algorithm takes as input an ex-
panded choreography (i.e. pre-processed by the expansion
algorithm in Figure 5), and produces a set of unreachable
interactions (namelyU ). The algorithm makes use of the
following auxiliary relations:

• Prec = Precedes ∪WeakPrecedes
• Inhibits ′: a variant ofInhibits that excludes certain

relationships that do not have any effect. Such rela-
tionships are characterized by the fact that the target
interaction can only occur after the source interaction
has completed and thus the source never manages to
actually inhibit the target (e.g. two interactions being
connected with a precedes relationship in one direction
and with a inhibits relationship in the opposite direc-
tion). Thus:Inhibits ′ = Inhibits \ (Prec−1)∗.

Lines 2-5 of the algorithm take care of patterns 1 and 2
identified above. Pattern 3 is more difficult to detect since
there is the condition that interactionj has to always ex-
ecute. Preceding guarded interactions (line 7) and targets
of inhibits relations might prevent this (line 8). However,
there are two cases where inhibits relations do not have any
effect: (i) if the target always happens before the source
(which we address by usingInhibits ′ instead ofInhibits);
or (ii) if the source is unreachable. To detect this latter case
we proceed in two steps. For each interactioni, if there is
an inhibits relationship targeting a preceding interactionj,
we temporarily classifyi as unreachable but we keep track
that this classification is subject to revision. We do this by
inserting a tuple into an auxiliary relation calledDepends,
indicating that the reachability ofi “depends” on the reach-
ability of the source of the inhibits relation targetingj (lines

12-13). Indeed, if the source of this inhibits relation turns
out to be itself unreachable, and thus will never be executed,
the inibits relationship in question will never impede the ex-
ecution ofj. In a second step, after having fully populated
the relationDepends, if it is found that all the interactions
upon which the reachability ofi depends have been clas-
sified as unreachable,i and all its successors are definitely
classified as unreachable as well (lines 15-16). Otherwisei
is classified as reachable (line 18).

In the rest of the paper, we restrict ourselves to chore-
ographies without unreachable interactions, that isU = ∅.

3.3 Enforceability algorithm

The algorithm for checking local enforceability is pre-
sented in Figure 8. This algorithm implements a function
that takes as parameter an expanded global model (i.e. a
global model after applying the algorithm in Figure 5) and
produces a set of pairs of interactions(i , j ) such that there is
a non-locally enforceable constraint betweeni andj. This
set of pairs is namedUR. Moreover, the algorithm produces
as set of interactionUI that include guarded and repeated in-
teractions which repetition instructions and guards respec-
tively can not be enforced.

In lines 1-3 of the algorithm, each relationship is checked
to ensure that there is at least one common actor involved
both in the source and in the target interaction. If this is
not the case, the respective pair of interactions is added to
the set of relationships that are not locally enforceable. The
“for each” loop starting in line 4 deals with more complex
requirements for weak-precedes relationships between pairs
of interactions(i, j). The “for each”-loop from line 5 to
line 8 checks each inhibits relationships that could cause the
source of the weak-precedes relationship (i) to be skipped.
The first part of the condition in the if-clause can only eval-
uate to true, if there is no direct or transitive precedes re-
lationship between the interaction that can be inhibited(l)
and interactionj, since in this case the enforceability is al-

6



1: U := {}; Depends :={};
2: for each (i, j) ∈ Precedes sorted topologically
3: if (i ∈ U ∨ ∃x ∈ I [x Inhibits j ∧ x Precedes∗ i]
4: ∨∃x, y ∈ I [x Inhibits y ∧ y Inhibits x ∧ x Precedes∗ i ∧ y Precedes∗ j]) then
5: U := U ∪ {j}
6: for each (i, j) ∈ Inhibits
7: if ∃(x, y) ∈ WeakPrecedes [i Prec∗ x ∧ y Prec∗ j ∧ ¬∃w ∈ GI (w Precedes∗ x)] then
8: if ¬∃(v, w) ∈ Inhibits ′ [w Precedes∗ i] then
9: U := U ∪ {k ∈ I | j Precedes∗ k}
10: else
11: U := U ∪ {j}
12: for each (v, w) ∈ Inhibits ′ wherew Precedes∗ i
13: Depends := Depends ∪ {(j, v)}
14: for each i ∈ I where∃j ∈ I(i Depends j)
15: if ¬∃j ∈ I \ U(i Depends+ j ∧ ¬∃k ∈ U(k Precedes+ j))then
16: U := U ∪ {k | i Precedes∗ k}
17: else
18: U := U \ {i}

Figure 7. Algorithm for detecting unreachable interactions

ready ensured. The second part of the condition that has to
be fulfilled in order to add the pair of interactions(i, j) to
the set of interactions with a non-locally enforceable con-
straint starts after the∧-symbol in line 6 and ends with line
7. It evaluates to true if there exists an actor that is involved
in the execution of interactionj and in an interaction that
is involved in a path of consecutive precedes relationships
going from the interaction that might be inhibited(l) to the
source of the weak-precedes relationship(i), and this actor
not being involved in the execution of an interaction follow-
ing the source of the inhibits relationship(k). This addi-
tional condition formulates the necessity, that any actor that
is involved in executing interactionj and that is involved
in the execution of an interaction that might be skipped due
to the inhibits relationship, must have knowledge about the
result of the evaluation of the guard. Therefore, the interac-
tion that provides this knowledge to the respective actor(n),
must be executed in any possible instance of the choreogra-
phy, which is expressed by the relating this interaction with
a Heralds relationship. We say that an interactionx “her-
alds” another interactiony if in any run where interactionx
occurs, interactiony necessarily occurs subsequently. If the
above “heralds” relationship holds betweenj and some suit-
ablen, holds, it can be assured that at least one of the actors
involved inj will know that i has been skipped (since they
would know that an alternative path was taken when inter-
actionn eventually occurs), and thus the actor(s) in ques-
tion would know that they can complete interactioni. In
this case, the weak-precedes relationship betweeni and j
is enforceable, otherwise it may not be enforceable and the
pair (i, j) is added toUR. An interaction may be skipped
either due to the presence of guards or due to inhibits rela-
tionships, hence the relationHeralds is defined as follows:

Precedes∗ \ {(i, j) ∈ I × I | ∃z ∈ I [i Precedes+ z ∧
z Precedes∗ j ∧ (z ∈ GI ∨ ∃x, y ∈ I
[x Inhibits ′ y ∧ y Precedes∗ z]]}

The “for each” loop in lines 9-12 checks each guarded
interaction that directly or transitively precedesi. If the
guard of one such interaction evaluates to false, the guarded
interaction (sayk) as well as all interactions directly or tran-
sitively connected to it via a precedes relationship, will be
skipped. This “path skipping” must be known by at least
one of the actors that performi andj. Thus, there has to be
a common actor involved in the execution ofi andj, and at
least one of these actors must evaluate the guard in question,
so as to know whether the path is skipped or not. Addition-
ally, it must be ensured that any actor involved both inj and
in an interaction lying on a path of consecutive precedes re-
lationships going fromk to i, evaluates the guard. In other
words, any actor involved in interactionj and in an interac-
tion that might be skipped if the considered guard evaluates
to false, must know the result of the evaluation of the guard.
If any of these conditions is not fulfilled, the weak-precedes
relationship fromi to j is not locally enforceable.

The “for each” loop in lines 13-21 deals with special re-
quirements for repeated interactions. This part of the al-
gorithms makes use of a construct calledCoordinators.
The coordinators is a set of actors that is defined for each
repeated and guarded interaction. For elementary interac-
tions, this set contains all actors that are performing a given
interaction and that are evaluating the guard or executing the
repetition instruction respectively assigned. For composite
interactions, this set contains all actors that are involved in
the execution of all initial and all final interactions, and that
are involved in the evaluation of the guard or the execution
of the repetition instruction respectively.

7



1: for each (i, j) ∈ Precedes ∪ Inhibits ′∪WeakPrecedes
2: if Performs(i) ∩ Performs(j) < 1
3: then UR := UR ∪ {(i, j)}
4: for each (i, j) ∈WeakPrecedes
5: for eachk, l,m, n ∈ I wherek Inhibits ′ l ∧ l Precedes∗ i
6: if¬(l Precedes+ j) ∧ (∃a ∈ Performs(j )∃m ∈ I¬∃n ∈ I[l Precedes∗ m ∧m Precedes∗ i∧
7: a ∈ Performs(m) ∧ a ∈ Performs(n) ∧ k Heralds n]
8: then UR := UR ∪ {(i, j)}
9: for eachk ∈ GI wherek Precedes∗ i
10: if ¬(k Precedes+ j) ∧ (Performs(j) ∩ Evaluates(k) ∩ Performs(i) = ∅ ∨ ∃a ∈ Performs(j)∃m ∈ I
11: [k Precedes∗ m ∧m Precedes∗ i ∧ a ∈ Performs(m) ∧ a 6∈ Evaluates(k)])
12: then UR := UR ∪ {(i, j)}
13: for each i ∈ (RI ∪GI )
14: if Coordinators(i) = ∅
15: then UI := UI ∪ {i}
16: for each (k, j) ∈ Precedes ∪WeakPrecedes ∪ Inhibits ′ where i /∈ Ancestors(j ) ∧ i ∈ Ancestors(k)
17: if Performs(j ) ∩ Performs(k) ∩ Coordinators(c) = ∅
18: then UR := UR ∪ {(k, j)}
19: for each (j, k) ∈ Precedes ∪WeakPrecedes ∪ Inhibits ′ where i /∈ Ancestors(j ) ∧ i ∈ Ancestors(k)
20: if Performs(j ) ∩ Performs(k) ∩ Coordinators(c) = ∅
21: then UR := UR ∪ {(j, k)}

Figure 8. Algorithm for determining local enforceability

Coordinators(i) := if i ∈ EI
then {a ∈ Actors | ∃e ∈ E[(i, e) ∈ Assignments∧
a ∈ Performs(i) ∧ a ∈ Conducts(e)]
else{a ∈ Actors | ∃e ∈ E,∃x ∈ I,
∃y ∈ I[(i, e) ∈ Assignments ∧ x ∈ Initial(i)∧
y ∈ Final(i) ∧ a ∈ {Performs(x ) ∩ Perfomrs(y)
∩Conducts(e)}]}
In lines 14 and 15 the set of coordinators is checked. If

this set is empty, the respective interaction is added to the
set of interactions that are not locally enforceable. The for-
each loop from line 16 to 18 iterates over all relationships,
where a sub-interaction of the considered interaction is the
source of a relationship to an interaction that is not a sub-
interaction of the considered interaction. For such relation-
ships to be enforceable, there must exist an actor involved
in the interactionsj andk that is part of the set of coordina-
tors of the considered interaction. In all other cases, there
exists no actor that is able enforce the relationship in ques-
tion. Thus, the relationship would be added to the set of
relationship that are not enforceable. The last three lines of
the algorithm are very similar to the ones before: the only
difference is that in this case all relationships are examined,
where the target of a relationship is a sub-interaction of the
interaction in question and the source is not.

4 Generating Local Models

The aim of the algorithm for generating local models is
to provide a local view for each of the actors participating
in a choreography. These local views should only include

elementary interactions where at least one of the communi-
cation actions is executed by the actor for which the local
view is generated. The challenge in generating local views
is the derivation of the correct relationships between inter-
actions. We illustrate this issue using the global view de-
picted in Figure 9. There are three participating actors in
this global model: “a1” playing the role “A”, “b1” playing
the role “B” and “c1” playing the role “C”.

Figure 9. Sample global model

The local view for actor “b1” equals to the whole chore-
ography since this actor participates in every interaction.
Meanwhile, the local model of actor “a1” consists of the
two interactions labeled “M1” and “M2” related via a two-
way inhibits relationship, plus the elementary interaction la-
beled “M5”. The latter interaction is not directly related
with “M1” in the global model, yet, in order to preserve
the semantics of the global model, the local model of “a1”
needs to explicitly render the “derived” weak-precedes re-
lationship between “M1” and “M5” (see the local model of

8



actor “a1” in Figure 10). Finally, the local model of “c1”
consists of the two interactions labeled “M3” and “M4”.
These interactions are unrelated in the choreography, yet, in
the local model of “c1” they are related via a two-way in-
hibits relationship (see Figure 10), since only one of these
two interactions can ever occur.

Figure 10. Generated local models

The algorithm in Figure 11 describes the generation of
the local model for a given actor in a choreography. Fol-
lowing the idea of abstracting from certain process steps
in process algebra by viewing them as “silent” orτ -steps
and then reducing the process to an equivalent one with-
out τ -steps [3], the algorithm proceeds by viewing elemen-
tary interactions in which no communication action is exe-
cuted by a considered actor as a silent orτ -interaction. A
set of reduction rules are then applied to remove theseτ -
interactions. The algorithm presented below implements a
procedure that, given a global model and an actora, com-
putes the local model corresponding to the view ofa on
the assigned global model. The “for each”-loop in line
2 iterates over everyτ -interaction in the considered local
view and tries to apply the six reduction rules to thisτ -
interaction. The reduction rules can be integrated in three
groups, which equals to the three “for each”-loops starting
in lines 3, 10, and 17: the first one forτ -interactions that are
the target of a precedes relationship, the second one forτ -
interactions that are the target of a weak-precedes relation-
ship and the third one forτ -interactions that are the source
of a precedes relationship. Each of these three loops con-
sists of two further for-each loops, whereby each of them
represents the second relationship of a combination of two
relationships to be reduced. Only with this structure it is
possible to consider every possible combination of relation-
ships and therewith not miss any possible reduction.

The first reduction rule applies for every combination of
two consecutive precedes relationships where the consid-
eredτ -interaction is in between. From this structure a pre-
cedes relationship between the source of the first and the
target of the second precedes relationship can be derived.

1: ProcedureLocalModel(a: Actor)
2: for each τ ∈ I where¬a ∈ Performs(τ)
3: for each i ∈ I where i Precedes τ
4: for each j ∈ I where τ Precedes j
5: Precedes := Precedes ∪ {(i, j)}
6: if ∃e ∈ E[(τ, e) ∈ Assigned ]
7: then Assigned := Assigned ∪ {(j, e)}
8: for each j ∈ I where τ WeakPrecedesj
9: WeakPrecedes:= WeakPrecedes∪{(i, j)}
10: for each i ∈ I where i WeakPrecedesτ
11: for each j ∈ I where τ WeakPrecedesj
12: WeakPrecedes:= WeakPrecedes∪{(i, j)}
13: for each j ∈ I where τ Precedes j
14: WeakPrecedes:= WeakPrecedes∪{(i, j)}
15: if ∃e ∈ E[(τ, e) ∈ Assigned ]
16: then Assigned := Assigned ∪ {(j, e)}
17: for each i ∈ I where τ Precedes i
18: for each j ∈ I where i Inhibits ′ τ
19: Inhibits ′ := Inhibits ′ ∪ {(j, i)}
20: if ∃e ∈ E[(τ, e) ∈ Assigned ]
21: then Assigned := Assigned ∪ {(i, e)}
22: for each j ∈ I where τ Inhibits ′ j
23: Inhibits ′ := Inhibits ′ ∪ {(i, j)}
24: if ∃e ∈ E[(τ, e) ∈ Assigned ]
25: then Assigned := Assigned ∪ {(i, e)}
26: for each i ∈ I
27: for eachR ∈ {Precedes,WeakPrecedes,
28: Inhibits′}
29: R := R \ {(i, τ), (τ, i)}
30: I := I \ {τ}

Figure 11. Algorithm for deriving local mod-
els from choreographies

Additionally, if theτ -interaction has a guard or a repetition
instruction assigned, then this expression is assigned to the
interaction that is the target of the second precedes relation-
ship. This pushing of expressions to following interactions
is executed in four of the six reduction rules and might lead
to expressions that are assigned to interactions, which ex-
ecution do not involve the actors nominated for evaluating
this expression. In this case, the expression is considered as
opaque and analogously considered while generating code-
fragments. The second rule applies for a weak-precedes
relationship as second relationship. In this case a weak-
precedes relationship between the source of the precedes
relationship and the target of the weak-precedes relation-
ship can be derived.

The next two reduction rules apply when aτ -interaction
is the target of a weak-precedes relationship: in the first rule
with theτ -interaction being the source of an weak-precedes
relationship, in the second rule with theτ -interaction being
the source of a precedes relationship. In both cases a weak-
precedes relationship is derived, connecting the source of

9



the original weak-precedes relationship and the target of the
second original relationship. In the latter case any expres-
sion assigned to theτ -interaction is assigned to the interac-
tion that is the target of the precedes relationship. The last
two reduction rules apply for combinations of one precedes
and one inhibits relationship. The first one covers the cases
where theτ -interaction is the source of a precedes relation-
ship and the target of an inhibits relationship. This leads to
a derived inhibits relationship where the source of the orig-
inal inhibits relationship is the source and the target of the
original precedes relationship is the target of the derived re-
lationship. The last reduction rule covers all combinations
of relationships where the consideredτ -interaction is the
source of a precedes and of an inhibits relationship. In this
case an inhibits relationship can be derived, having the tar-
get of the original precedes relationship as source and the
target of the original inhibits relationship as target. Both re-
duction rules involving inhibits-relationships have the push-
ing down of expressions to the interaction that is the target
of the precedes-relationship incorporated. Having applied
all reduction rules, the consideredτ -interaction and all re-
lationships in which it is involved are deleted (lines 18-22).

5 Related Work

The description of global service interaction models
(also called choreographies) has been the subject of inten-
sive research and standardization. This had led to various
special-purpose languages such as WS-CDL, BPSS/ebBP
and EDOC (see references in Section 1). In contrast,
the issue of local enforceability of global models has re-
ceived little attention. Existing formalizations of WS-CDL
(e.g. [16]) skirt the issue of local enforceability of chore-
ographies. Instead, they assume the existence of a state (i.e.
a set of variables) shared by all participants. Participants
synchronize with one another to maintain the shared state
up-to-date. This effectively means that some interactions
take place between services to synchronize their local view
on the shared state, and at least some of these interactions
are not explicitly defined in the choreography. In the worst
case, this could lead to situations where a business analyst
signs off on a choreography, and later it turns out that in
order to properly execute this choreography a service pro-
vided by one organization must interact with a service pro-
vided by a competitor, unknowingly of the business analyst.
A similar approach is followed in [5], where the authors for-
malize relationships between choreographies and orchestra-
tions (i.e. local models). Meanwhile, in defining a transla-
tion from WS-CDL to BPEL, [11] adopts a different ap-
proach: control dependencies between interactions that can
not be enforced in the local models are simply ignored. In
this paper, we argue that neither approach (introducing hid-
den interactions or ignoring unenforceable dependencies)

is satisfactory. Instead, we propose tool support as an ap-
proach to detect unenforceability of choreographies.

Let’s Dance draws upon previous work in the area of
workflow and architecture description languages. In partic-
ular, the “weak precedes” construct is inspired from (though
not equivalent to) the “weak sync” construct defined in
the ADEPT workflow definition language [14]. Mean-
while, the “inhibits” construct is inspired from the “dis-
abling” construct of the Interactive Systems Description
Language (ISDL): an architecture description language that
supports the specification of behavioral dependencies be-
tween component interactions. A discussion on the appli-
cation of ISDL for service choreography modeling is pre-
sented in [13]. However, the suitability of ISDL for captur-
ing complex service interactions (e.g. involving multicast)
is unproven.

In [4], the authors consider the use of state machines
for describing local models of service interactions. While
state machines lead to simple models for highly sequen-
tial scenarios, they may lead to spaghetti-like models when
used to capture scenarios with parallelism and cancella-
tion. Nonetheless, state machines have been shown to be
a suitable formal foundation for reasoning about service
models [9]. This latter reference surveys a number of ap-
proaches for describing service interaction models based
on communicating state machines. None of the proposals
covered by this survey addresses the issue of local enforce-
ability of global models. Instead, service interactions are
described as collections of interconnected local models.

Foster et al [8] suggest the use of Message Sequence
Charts (MSCs) for describing global service interaction
models. These global models are converted into local mod-
els expressed as FSMs for analysis purposes. It should be
noted that MSCs are a notation for describing behavior sce-
narios as opposed to full behavior specifications. In partic-
ular, basic MSCs do not allow one to capture conditional
branches, parallel branches, and iterations. Extensions to
MSCs to capture complex behavior have been defined, but
in realistic cases they lead to cluttered diagrams since MSCs
are based on lifelines which are fundamentally targeted at
capturing sequencing rather than branching.

6 Conclusion and future research directions

This paper has put forward the issue of local enforceabil-
ity of global service interaction models (choreographies).
An algorithm is proposed that analyzes the relationships be-
tween interactions defined in a choreography and identifies
those that are not enforceable. A second algorithm serves
the purpose of generating local models for each actor par-
ticipating in a given choreography. These local models can
be used as a basis for generating behavioral interfaces and
executable service descriptions. In a separate work we have

10



formalized the control-flow constructs of the language us-
ing π-calculus [7].

We are implementing a toolset that supports the model-
ing of Let’s Dance choreographies and the development of
services based on these models. The algorithms for chore-
ography expansion, reachability analysis and local enforce-
ability have been implemented. Ongoing work aims at im-
plementing the algorithm for local models generation. Fu-
ture work will aim at further validating the proposed lan-
guage by designing and implementing model transforma-
tions for generating code templates (e.g. in BPEL) from lo-
cal models. Also, we are working on extending the formal
semantics with respect to communication and correlation.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J.
Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S.
Thatte, I. Trickovic, and S. Weerawarana:Business
Process Execution Language for Web Services,
version 1.1, May 2003. Available at: http:
//www-106.ibm.com/developerworks/
webservices/library/ws-bpel

[2] A. Barros, M. Dumas, and A. H.M. ter Hofstede:Ser-
vice Interactions Patterns.In Proceedings of the 3rd
International Conference on Business Process Man-
agement (BPM), Nancy, France, September 2005.
Springer Verlag, pp. 302-218.

[3] J. C. M. Baeten, W. P. Weijland:Process Algebra,
Cambridge University Press, 1990.

[4] B. Benatallah, F. Casati, F. Toumani, and R. Hamadi:
Conceptual Modelling of Web Service Conversa-
tions. In Proceedings of 15th International Confer-
ence on Advanced Information Systems Engineering
(CAiSE’03), Velden, Austria, June 2003, pp. 449-467
Springer Verlag.

[5] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavat-
taro: Choreography and Orchestration Conformance
for System Design.In Proceedings of 8th International
Conference on Coordination Models and Languages
(COORDINATION’06), Bologna, Italy, June 2006,
Springer Verlag.

[6] J. Clark, C. Casanave, K. Kanaskie, B. Har-
vey, N. Smith, J. Yunker, K. Riemer (Eds).
ebXML Business Process Specification Schema Ver-
sion 1.01, UN/CEFACT and OASIS Specification,
May 2001. http://www.ebxml.org/specs/
ebBPSS.pdf .

[7] G. Decker, J.M. Zaha, M. Dumas:Execution Seman-
tics for Service Choreographies.In Proceedings of 3rd

International Workshop on Web Services and Formal
Methods (WS-FM 2006), Vienna, Austria, September
2006. LNCS.

[8] H. Foster, S. Uchitel, J. Magee, J. Kramer:Tool Sup-
port for Model-Based Engineering of Web Service
Compositions.In Proceedings of the IEEE Interna-
tional Conference on Web Servies (ICWS), Orlando
FL, USA, July 2005. IEEE Computer Society.

[9] R. Hull, J. Su: Tools for composite web services: a
short overview.SIGMOD Record 34(2): 86-95, 2005.

[10] N. Kavantzas, D. Burdett, G. Ritzinger, and Y. La-
fon. Web Services Choreography Description Lan-
guage Version 1.0, W3C Candidate Recommenda-
tion, November 2005.http://www.w3.org/TR/
ws-cdl-10 .

[11] J. Mendling, M. Hafner:From Inter-organizational
Workflows to Process Execution: Generating BPEL
from WS-CDL.In Proceedings of the OTM Workshops
2005, Agia Napa, Cyprus, November 2005, pp. 506-
515, Springer Verlag.

[12] Object Mangement Group (OMG):UML Profile for
EDOC. http://www.omg.org/technology/
documents/formal/edoc.htm

[13] D.A.C. Quartel, R.M. Dijkman, M. van Sinderen:
Methodological support for service-oriented design
with ISDL. In Proceedings of the 2nd Intenational
Conference on Service-Oriented Computing (IC-
SOC), New York NY, USA, November 2004, pp 1–10,
Springer Verlag.

[14] M. Reichert, P. Dadam:ADEPTflex – Supporting Dy-
namic Changes of Workflows Without Losing Control.
Journal of Intelligent Information Systems 10(2): 93-
129, 1998.

[15] S. White: Business Process Modeling Notation
(BPMN)– Version 1.0, May 3 2004,http://www.
bpmi.org .

[16] H. Yang, X. Zhao, Z. Qiu, G. Pu , and S. Wang:
A Formal Model for Web Service Choreography De-
scription Language (WS-CDL)Preprint, School of
Mathematical Sciences, Peking University, January
2006http://www.math.pku.edu.cn:8000/
var/preprint/7021.pdf

[17] J.M. Zaha, A. Barros, M. Dumas, A. ter Hofstede:
Let’s Dance: A Language for Service Behavior
Modeling. Technical Report FIT-2006, Faculty
of IT, Queensland University of Technology.
http://eprints.qut.edu.au/archive/
00004468/

11


