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Abstract. Cross-organizational business processes are gaining increased
attention these days, especially with the service oriented architecture
(SOA) as a realization for business process management (BPM). In SOA,
interaction agreements between business partners are defined as chore-
ographies containing common interaction patterns. However, complex
interactions are difficult to specify, basically because a formal, common
standard supporting all interaction patterns is missing. This paper takes
the next steps by investigating formal representations of service interac-
tion patterns in π-calculus and Petri nets. Since dynamic routing based
on mobility is a central aspect of choreographies we argue that π-calculus
is better suited for formalizing service interactions than place/transition
and colored Petri nets.

1 Introduction

Service-oriented architectures (SOA) as a realization for business process man-
agement (BPM) aim at closely supporting business processes within a company
and between business partners [1,2]. Services are employed to perform tasks
within these processes and processes themselves can be exposed as services. We
distinguish between orchestrations where one business partner enacts a set of
services in a given order and choreographies which represent the interaction
protocols between several business partners [3]. In a setting where the different
business partners encapsulate their business logic as services, service interactions
are at the center of attention. A lot of effort has been undertaken to identify
the most common interaction scenarios from a business perspective, which have
been published as Service Interaction Patterns in [4]. Barros et al categorize the
patterns according to the number of participants in an interaction (bilateral vs.
multi-lateral), the maximum number of exchanges (single-transmission vs. multi-
transmission interactions) and whether the receiver of a response is necessarily
the same as the sender of a request (round-trip vs. routed interactions).

The service interaction pattern are only described textually, together with
business examples and design choices. The authors also come up with imple-
mentation examples using BPEL [5] and other standards from the WS-* stack.
However, the textual descriptions do not allow choreographies to be modeled
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else then by using textual descriptions again. The BPEL examples lack support
for different service interaction patterns, those leaving the modeler with only
a subset of possibilities. Furthermore, both kinds of descriptions lack support
for formal reasoning on interaction properties like conformance, reliability, or
deadlock freedom.

To overcome the limitations of expressiveness in existing notations and to
allow formal reasoning, we propose the use of formal representations of service
interaction patterns. When looking into BPM literature we see that Petri nets in
all their different flavors dominate the research community. Therefore, we inves-
tigate if Petri nets are suitable for formalizing the service interaction patterns.
Furthermore, in the last years π-calculus, a general purpose process algebra,
came up in the BPM domain. We analyze if interaction and mobility, the core
aspects of π-calculus, are also at the heart of the service interaction patterns.
The paper is organized as follows. We start by investigating related work. This
is followed by discussing the interaction patterns in Petri nets, where we inves-
tigate serious problems. However, these problems can be solved by using the
π-calculus as shown in the next section. Finally, a conclusion is drawn and an
outlook is given.

2 Related work

Recently several papers have been published that deal with formalizing web
service choreographies, e.g. [6,7], or Busi et al [8]. All these approaches are based
on process algebras other then π-calculus. Busi et al argue that mobility, a key
feature of the π-calculus, is not needed for describing service choreographies.
They assume that all interaction participants are known at design-time. They
introduce their own process algebra for service orchestration and choreography
and show how conformance between a set of orchestrations and a choreography
can be proved. Petri net based approaches from Martens [9] or van der Aalst et al
[10] make the same assumptions. Moreover, Petri nets already fail in representing
all workflow patterns [11], leading to the development of a new orchestration
language called YAWL [12].

However, all these publications and standards like WS-CDL [13] consider
only one-way- and simple request-response-interactions. This is heavily criticized
by Barros et al in [3]. Puhlmann and Weske have formalized all the workflow
patterns [11] using the π-calculus in [14]. This allows for translating a huge
range of service orchestrations into π-processes. Puhlmann et al have already
sketched in [15] how π-calculus could be used for formalizing service invocations
and represent correlations. There has not been a formalization of the service
interaction patterns so far.

3 Interaction Patterns in Petri nets

Petri nets form a strong theoretical foundation for traditional intra-organizational
business processes [16]. Many scientific publications regarding for instance dif-
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Fig. 1. Send/Receive as State/Transition net.

ferent kinds of correctness, adaptability, change, or performance ground this
assertion [17,18,19,20]. Petri nets have even been used to model simple forms
of interacting business processes [10,9]. However, during our investigations on
formalizing service interaction patterns [4] in Petri nets we found several critical
issues. This section summarizes and discusses them.

3.1 Petri nets

Petri nets as originaly introduced in [21] are bipartite graphs consisting of places
and transitions that are connected via directed edges. Places can contain tokens
that can be consumed and produced by transitions. Places are visualized by
circles, transitions by rectangles, and tokens by small solid circles. Transitions
and places can be assigned to different actors, which are graphically represented
by swim lanes. Tokens represent control flow as well as data flow. Tokens passed
from one actor to another will represent messages in our formalizations. More
information about different kinds of Petri nets used in BPM can be found for
instance in [16], colored nets are discussed e.g. in [22].

3.2 Simple Interaction Patterns

A send/receive pattern can be modeled in Petri nets as shown in figure 1. Now
imagine that several instances of the interaction take place at the same time.
In this case more tokens flow through the net. However, there is no information
about which tokens belong to the same instance (if we use simple place/transition
nets). Therefore, these simple nets do not support correlation. Figure 2 illustrates
how the one-from-many receive pattern in the basic version (stop condition =
success condition = n messages received) would be modeled using Petri nets.

Transitions have to be enabled before they can fire. I.e. n tokens have to be
available in place p1 and one token in p2 before t1 can consume these tokens and
produce a token on place p3. Once t1 has fired t2 cannot fire any more because
there is no token in p2. We have to stress the can fire because t1 is not forced
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Fig. 2. One-from-many Receive.

Fig. 3. Request with Referral as Place/Transition net.

to fire. It could happen that t1 could fire but does not and then the time out
occurs (a token is produced in place p4) and t2 fires.

This problem also comes up in the racing incoming messages pattern. This
pattern defines that the continuation is activated as soon as the first message
arrives. However, in the case of Petri nets the transition is not forced to consume
the first token but could also consume the second instead. There is a solution
to this problem though: Timed Petri [16] nets introduce a notion of temporal
ordering of tokens.

3.3 Issues Regarding Complex Interaction Patterns

Figure 3 shows a formalization for the request with referral pattern using a
place/transition net. Since we cannot encode anything in the token we have
to indicate the third interaction partner by putting a token into the appropriate
place for B. As we might face a huge number of potential interaction partners,
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Fig. 4. Request with Referral as Colored Petri net.

we have to model a huge number of places and transitions. However, this is not
feasible.

Another approach is to encode an identifier of the third interaction in the
token, which is supported by colored Petri nets. That way, we introduce some-
thing like a bus (see place pBus in figure 4) where every potential interaction
partner is connected to. Guard conditions prevent a transition from consuming
tokens that were not meant to be received by the corresponding actor. Figure
4 illustrates the idea. We have drastically reduced the number of places and
transitions compared to the previous formalization using state/transition nets.
Nevertheless, there are still some drawbacks to this approach:

– We still have to model connections between every set of potential interaction
partners. In the web there might be thousands or more potential interaction
partners in every interaction.

– Due to the different combinations of interaction partners in an interaction
the arc and guard expressions might become very complex.

– We cannot model change. Because of the static nature of Petri nets we have
to know every potential interaction at design-time. This does not reflect the
reality where new potential interaction partners appear and also disappear
at run-time.

As a conclusion, ten out of the thirteen service interaction patterns incor-
porate sending messages. In all of these cases it is explicitly stated that the
receiver might not be known at design-time. Even using colored Petri nets we
have seen that modeling this mobility with the nets is not feasible when dealing
with many potential interaction partners (which has to be assumed). The next
section will introduce a solution based on the π-calculus semantics of mobility,
that overcomes the limitations of Petri nets.



6 Gero Decker and Frank Puhlmann

4 Formalizing the Interaction Patterns using Pi-Calculus

At the center of π-calculus we deal with processes that interact with each other.
The communication channels as well as the messages sent over these channels
are called names. Channels can be passed as messages to other processes and
be used for interaction later on. This capability is called link mobility. It allows
smart solutions for formalizing the service interaction patterns. The following
subsections introduce how.

4.1 The Pi-Calculus

The π-calculus is an algebra for the formal description and analysis of concurrent,
interacting processes with support for link passing mobility. It is based on names
and interactions used by processes defined according to [23]. The syntax of the
π-calculus processes is given by:

P ::=M | P |P ′ | vzP | !P
M ::=0 | π.P | M + M ′

π ::=x〈ỹ〉 | x(z̃) | τ | [x = y]π .

The informal semantics is as follows: P |P ′ is the concurrent execution of P and
P ′, vzP is the restriction of the scope of the name z to P , and !P is an infinite
number of copies of P . 0 is inaction, a process that can do nothing, M + M ′

is the exclusive choice between M and M ′. The output prefix x〈ỹ〉.P sends a
sequence of names ỹ over the co-name x and then continues as P . The input
prefix x(z̃) receives a sequence of names over the name x and then continues
as P with z̃ replaced by the received names (written as { ˜name/z̃}). Matching
input and output prefixes might communicate, those leading to an interaction.
The unobservable prefix τ.P expresses an internal action of the process, and the
match prefix [x = y]π.P behaves as π.P , if x equals y. We utilize upper case
letters for process identifiers and lower case letters for names. The abbreviation∑m

1 (M) is used to denote the summation of m choices,
∏m

1 (P ) denotes the com-
position of m parallel copies of P , and {π}m

1 denotes m subsequent executions
of π. Furthermore defined processes from the original paper on the π-calculus
are used for parametric recursion, that is A(y1, ..., yn) [24]. An introduction can
be found for instance in [25] or [26].

4.2 Interactions in the Pi-Calculus

In the pattern representations each interaction participant is modeled as a π-
calculus process. In the case of bilateral interactions we named them A and B, in
the case of multi-lateral interactions A, Bi and P where i = 1, 2, · · · . Since timers
and exception handling are explicitly called for in the patterns we introduce an
environmental process EX per interaction participant (X = A,B,Bi, P ). It is left
open how timeouts and exception handling are implemented. settimerEX

〈timer〉
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is supposed to set a new timer where a timeout is thrown by sending on channel
timer. Exceptions can be thrown by sending on channel faultEX

.
In the π-calculus a message represented by a name is sent and received at the

same time, resulting in an interaction. I.e. if a process wants to send a message
then it blocks until a receiver actually receives the message. Therefore, the π-
calculus assumes synchronous communication as well as reliable and guaranteed
delivery as the default case. If we want to model that a message sent from A to
B can get lost or that the delivery can be delayed we might introduce a medium
M in the following way:

A = b1 〈msg〉 .0

M = b1(msg).((b2 〈msg〉 .0 + τ0.0) | M)
B = b2(msg).0

The medium decides non-deterministically if the message is either discarded or
forwarded to B. Due to the sequence within M , sending msg in A and receiving
msg in B do not happen at the same point in time, which models a potential
delay as well as asynchronous communication. Another property of the medium
concerning the order of delivery is that first in first out(FIFO) is not guaran-
teed any longer. Introducing such a medium allows for reasoning if a process
still meets its requirements even in the case of delayed or unreliable message
delivery. However, we assume that the underlying infrastructure (represented by
the environmental processes E) guarantees reliable FIFO delivery. In the cases
where this cannot be met we assume that an exception faultE is raised for the
whole composition.

The following subsections present formalizations for every service interaction
pattern. As proposed in [26] we omit the termination symbol 0 in process defini-
tions for simplicity. The pattern descriptions at the beginning of each subsection
are directly taken from [4].

4.3 Single-transmission Bilateral Interaction Patterns

Send: A party sends a message to another party. The pattern definition distin-
guishes between blocking send and non-blocking send. In the case of blocking
send the sending process cannot proceed until it can be sure that the message
has been received. As already mentioned above this blocking behavior is inherent
to π-calculus. Blocking send is given by:

A = b 〈msg〉 .A′

B = b(msg).B′

This pattern formalization leaves it open if the receiver of the message is
known at design-time or not. If we define the system as

S = (v b)(A | B)



8 Gero Decker and Frank Puhlmann

then A knows the link to B at design-time. If we define it as

S = (v lookup)(lookup(b).A | (v b)(B | D))

then A would get the link to B at run-time. In this case D could be something
like a UDDI directory where we can lookup the receiver. A′ and B′ represent
the so called continuations mentioned in the pattern descriptions. We continue
with non-blocking send:

A = b 〈msg〉 | A′

B = b(msg).B′

Strictly speaking we could omit the formalization for B. However, for illus-
tration purposes we provide one possible implementation for B to have a valid
choreography. Most interaction patterns describe the interactions from the per-
spective of one single participant. In order to get a minimal choreography we
have to plug several patterns together (e.g. send for A and receive for B).

Receive: A party receives a message from another party. This pattern is given
by:

A = a(msg).A′

B = a 〈msg〉 .B′

Send/Receive: A party A engages in two causally related interactions. In the
first interaction A sends a message to another party B (the request), while in
the second one A receives a message from B (the response). In order to keep
track of the relation between the two interactions we have to introduce some kind
of correlation mechanism. In π-calculus we can create an infinite number of new
names for a process that are not known to any other process. We create a new
name for every set of correlated interactions. If we then use this new channel for
communication we can be sure that any message that is sent over this channel
is correlated to the other interactions. In the following example A creates a new
name a used for receiving the response. A blocks until the corresponding message
has been received. Blocking send/receive is given by:

A = (v a)b 〈a, req〉 .a(resp).A′

B = b(a, req).τB .a 〈resp〉 .B′

As already mentioned above the formalization of B is only one valid example.
E.g. we could imagine interactions with other processes between receiving the
request from A and sending the response. Non-blocking send/receive:

A = (v a, h)(A1|A2)

A1 = b 〈a, req〉 .(h | A′
1)

A2 = h.a(resp).A′
2

B = b(a, req).τB .a 〈resp〉 .B′

The new name h has to be introduced since the pattern descriptions demands
that the request has been sent before a response can be received.
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4.4 Single-transmission Multilateral Interaction Patterns

Racing incoming messages: A party expects to receive one among a set of mes-
sages. These messages may be structurally different (i.e. different types) and may
come from different categories of partners. The way a message is processed de-
pends on its type and/or the category of partner from which it comes. Normally
names are not typed in π-calculus. In order to retrieve the type of a message
we could explicitly receive a second name representing the type. We opted for a
more elegant way: for each type a channel is created and thus the channel a mes-
sage is sent over determines the message’s type. In the following formalization
we assume that there are two different types of messages. Each Bi can send a
message over channel a1 if it is of the first type or over channel a2 for the second
type. Depending on the type of the message the continuation for A is either A′

1

or A′
2. The pattern distinguishes between discarding remaining messages and

keeping them for further interactions. If remaining messages are not discarded,
the patterns is defined by:

A = (a1(msg).A′
1 + a2(msg).A′

2)
Bi = (a1 〈msg〉 .B′

i + a2 〈msg〉 .B′
i)

Once again the formalization for Bi is just an example. In this case every Bi

can sent messages of every type. If we want to model that the continuation of
A depends on the category of the sender we could define Bi = a1 〈msg〉 .B′

i and
introduce another category Ci = a2 〈msg〉 .C ′

i. A generic formalization for an
arbitrary number of different types/categories would be A =

∑n
i=1 ai(msg).A′

i

In the following formalization all remaining messages are received but not
taken care of. The number of messages is not known at run-time:

A = a1(msg).(A′
1 | Adiscard) + a2(msg).(A′

2 | Adiscard)
Adiscard =!a1(msg) | !a2(msg)

Bi = (a1 〈msg〉 .B′
i + a2 〈msg〉 .B′

i)

In order to be able to receive an arbitrary number of messages we have to
use the ! operator which stands for an infinite number of processes that run
in parallel. Therefore, A never terminates. It can be seen as a drawback of π-
calculus that discarding an unknown number of messages cannot be modeled in
a different way.

One-to-many send: A party sends messages to several parties. The messages all
have the same type (although their contents may be different). If the number of
recipients is known at design-time:

A = (v h)(
n∏

i=1

bi 〈msgBi〉 .h | {h}n
1 .A′)

Bi = bi(msg).B′
i
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If the number of recipients is known at run-time:

A =(v h)(A1(h) | h.A′)
A1(h) =hasnext(hn).

([hn = true]next(b).(v i)(b 〈msg〉 .i.h | A1(i))

+ [hn = false]h)
Bi =bi(msg).B′

i

For this pattern we have introduced the concept of an iterator that iterates
over a set of recipients. The process hasnext returns either true or false to tells
us if there are more elements. next returns the next recipient. An iterator could
be defined using data structures such as a stack (see e.g. [25]).

One-from-many receive: A party receives a number of logically related messages
that arise from autonomous events occurring at different parties. The arrival
of messages needs to be timely so that they can be correlated as a single logical
request. The interaction may complete successfully or not depending on the set
of messages gathered. The pattern introduces the notion of a stop condition and
a success condition. In the simplest flavor of the pattern the interaction succeeds
if n messages have been received. In this case we stop the interaction as soon as
this success condition is met or a timeout has occurred:

A =(v timer, kill)(settimerEA
〈timer〉. {a(msg)}n

1 .exec

| (exec.kill.A′ + kill) | (timer.kill.faultEA
+ kill))

Bi =a 〈msg〉 .B′
i

In order to model arbitrary stop and success conditions we can use non-deterministic
choices:

A =(v exec, timer)(settimerEA
〈timer〉.(!a(msg).( exec + τ0︸ ︷︷ ︸

stop condition

))

| timer.exec | exec.( A′ + faultEA︸ ︷︷ ︸
success condition

))

Bi =a 〈msg〉 .B′
i

An infinite number of messages can be received over channel a. Each time a mes-
sage arrives we check if the stop condition is already met. If this is the case then
the process sends over channel exec. Now it is checked if the success condition is
met. The pattern description defines that the success of the interaction depends
on the set of messages. This is not explicitly modeled in the formalization.

One-to-many send/receive: A party sends a request to several other parties, which
may all be identical or logically related. Responses are expected within a given
timeframe. However, some responses may not arrive within the timeframe and
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some parties may even not respond at all. The interaction may complete suc-
cessfully or not depending on the set of responses gathered. If the recipients are
known at design-time and we assume arbitrary stop and success conditions the
formalization of one-to-many send/receive looks as follows:

A =(v timer, exec)(settimerEA
〈timer〉.

n∏
i=1

Ai

| timer.exec | exec.(A′ + faultEA
))

Ai =(v a)(bi 〈a, req〉 .a(resp).(exec + τ0))
Bi =bi(a, req).τBi .a 〈resp〉 .B′

i

If the recipients are known at run-time we introduce an iterator once again:

A =(v timer)(settimerEA
〈timer〉.A1 | timer.exec | exec.(A′ + faultEA

))
A1 =hasnext(hn).([hn = true]next(b).(A1 | A2(b)) + [hn = false]τ0)

A2(b) =(v a)(b 〈a, req〉 .a(resp).(exec + τ0))
Bi =bi(a, req).τBi .a 〈resp〉 .B′

i

4.5 Multi-transmission Interaction Patterns

Multi-responses: A party A sends a request to another party B. Subsequently,
A receives any number of responses from B until no further responses are re-
quired. The trigger of no further responses can arise from a temporal condition
or message content, and can arise from either A or B’s side. In the following
formalization we do not explicitly model the temporal condition mentioned in
the pattern description:

A = (v a)b 〈a, req〉 .Areceive

Areceive = a(resp).τA.(Areceive + A′ + b〈stop〉.A′)
B = b(a, req).Bsend

Bsend = τB .(a 〈resp〉 .(Bsend + B′) + b(stop).B′)

In Areceive we see a non-deterministic choice with three alternatives. The first al-
ternative can be taken if another message arrives from B. The second alternative
is chosen if the message content of the last message indicated the termination
of the interaction. The third option models the possibility that A decides to
stop the interaction. These three options also appear in Bsend. Either another
message is sent or B decides to terminate the interaction or a stop-message is
received from A.

Contingent requests: A party A makes a request to another party B1. If A does
not receive a response within a certain timeframe, A alternatively sends a request
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to another party B2, and so on. A retrieves the list of invocation targets at run-
time. For that purpose we use an iterator once again. An import design issue of
this pattern is whether or not responses should be considered after the timeout
has already occurred. If we do not consider responses from services we invoked
earlier:

A =hasnext(hn).

([hn = true]next(b).(v a)b 〈a, req〉 .(v timer)settimerEA
〈timer〉.

(a(resp).A′ + timer.A)

+ [hn = false] faultEA
)

Bi =bi(a, req).τBi
.a 〈resp〉 .B′

i

When considering responses from services invoked earlier, the pattern is as
follows:

A =(v exec)(hasnext(hn).

([hn = true]next(b).(v a)b 〈a, req〉 .(v timer)settimerEA
〈timer〉.

(a(resp).exec + timer.(A | (a(resp).exec + h)) + h)

+ [hn = false] faultEA
)

| exec.(A′ | !h))
Bi =bi(a, req).τBi

.a 〈resp〉 .B′
i

Atomic multicast notification: A party sends notifications to several parties such
that a certain number of parties are required to accept the notification within
a certain timeframe. For example, all parties or just one party are required to
accept the notification. In general, the constraint for successful notification ap-
plies over a range between a minimum and maximum number. We introduce
the two names accept and reject. If A receives a reject-message, the multicast
notification has failed and the continuation A′

2 is taken. If m accept-messages are
received before a reject-message arrives the multicast notification has succeeded
and the continuation A′

1 is taken:

A =(v a, h, exec)((
n∏

i=1

bi 〈a, notification〉 .a(resp).

([resp = accept]h + [resp = reject]exec 〈reject〉))
| {h}m

1 .exec 〈accept〉

| exec(resp).(([resp = accept]A′
1 + [resp = reject]A′

2) |
n∏

i=1

bi 〈resp〉))

Bi =bi(a, notification).τBi
.

(a 〈accept〉 .bi(resp).([resp = accept]B′
i1 + [resp = reject]B′

i2)+
a 〈reject〉 .B′

i2 + bi(resp).B′
i2)
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4.6 Routing Patterns

Request with referral: Party A sends a request to party B indicating that any
follow-up response should be sent to a number of other parties (P1, P2, · · · , Pn)
depending on the evaluation of certain conditions. While faults are sent by default
to these parties, they could alternatively be sent to another nominated party
(which may be party A). While the pattern descriptions talks about a number
of parties Pi, the following formalization only presents the case of one party P
for better readability:

A = (v a)b 〈a, p, req〉 .a(resp).A′

B = (v msg)b(a, x, req).τB .x 〈a,msg〉 .B′

P = p(a,msg).τP .a 〈resp〉 .P ′

If we want the follow-up responses to be sent to several Pi we could incorporate
the pattern one-to-many send into B. The following formalization models that
all faults are sent to A:

A = (v a, toa)b 〈a, p, toa, req〉 .(a(resp).A′ + toa.faultEA
)

B = b(a, x, faultto, req).τB .(x 〈a, faultto, msg〉 .B′ + overlinefaultto.faultEB
)

P = p(a, faultto, msg).τP .(a 〈resp〉 .P ′ + (faultto | faultEP
))

In this pattern it becomes obvious that every participant needs his own exception
handling mechanism which is implemented in the corresponding environmental
processes EA, EB and EP .

Relayed request: Party A makes a request to party B which delegates the request to
other parties (P1, · · · , Pn). Parties P1, · · · , Pn then continue interactions with
party A while party B observes a view of the interactions including faults. The
interacting parties are aware of this view (as part of the condition to interact).
Like we already did it for the last pattern we only model one party P :

A = (v a)b 〈a, req〉 .a(resp).A′

B = b(a, req).p 〈a, b, req〉 .b(resp).B′

P = p(a, b, req).τP .(v h)(a 〈resp〉 .h | b 〈resp〉 .h | h.h.P ′)

Dynamic routing: A request is required to be routed to several parties based on
a routing condition. The routing order is flexible and more than one party can
be activated to receive a request. When the parties that were issued the request
have completed, the next set of parties are passed the request. Routing can be
subject to dynamic conditions based on data contained in the original request or
obtained in one of the intermediate steps. Since the pattern description covers
a broad range of possible interactions we will only focus on two aspects. The
first aspect is routing the request to a third party based on the content of the
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message. If there are n possible recipients C1 to Cn known at design-time the
formalization looks as follows.

A = b 〈req1〉 .A′

B = b(req1).τB .
n∑

i=1

ci 〈req2〉 .B′
i

Ci = ci(req2).C ′
i

The second aspect that is mentioned in the detailed pattern description covers
routing a document from one participant to another where every participant has
read-only access to the document the whole time but has to retrieve a write-
token when wanting to modify the document. The following formalization shows
how such data structures can be expressed in π-calculus:

GenD = !(v read, lock, x)create〈read, lock〉.Dunlocked(x)

Dunlocked(x) = read〈x〉.Dunlocked(x)

+ (v write, ul)lock〈write, ul〉.Dlocked(x, write, ul)

Dlocked(x,write, ul) = read〈x〉.Dlocked(x, write, ul)
+ write(y).Dlocked(y, write, ul)
+ ul.Dunlocked(x)

GenD is a generator that can create an infinite number of memory cells.
Every participant wanting access to this memory cell needs the read and lock
channels. As soon as a participant locks the cell, this participant gets the write
channel that he can use in order to modify the contents. He has to unlock the
cell before anyone else can retrieve a write channels. Every time the cell is
locked, new names for the write and unlock channels are created. That way it is
ensured that only the participant who has currently locked the cell can write on
it and can unlock it. Let us now assume a scenario where a participant A sends
a document to a set of recipients B1 · · ·Bn. In an inter-leaved parallel routing
manner every participant is asked to modify the document.

A =(v h)(
n∏

i=1

bi〈read, lock〉.h | {h}n
1 .A′)

Bi =bi(read, lock).lock(write, unlock).read(doc).τBi
.write〈doc〉.unlock.B′

5 Conclusion and Outlook

In this paper we have shown how the service interaction patterns can be formal-
ized. We investigated traditional approaches using different types of Petri nets
as well as a new direction based on mobile process algebra represented by the
π-calculus. We investigated and discussed short comings of Petri nets and tried
to solve them using high level extensions. However, as Petri nets do not sup-
port the concept of mobility, required for dynamic routing in service interaction
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patterns, they fail at representing even simple patterns in practice. Neverthe-
less, theoretically all service interaction patterns could be modeled using Petri
nets by constructing infinite nets as ten out of thirteen patterns incorporate
sending messages, where the receiver might not be known at design-time. To
overcome the limitations of Petri nets, we investigated mobility as represented
by the π-calculus to formalize the patterns. We were able to express all service
interaction patterns in π-calculus processes. Therefore, our final conclusion is
that π-calculus is better suited for expressing the service interaction patterns
(see [27] for a definition of suitability).

The formalizations presented in this paper can be the starting point for fur-
ther work on a complete formal grounding of the intersection of the domains ser-
vice oriented architectures and business process management using π-calculus.
The very next step would be to show how the formalizations of the service in-
teraction patterns can be integrated with the formalizations of the workflow
patterns provided in [14]. Once we have both a choreography and corresponding
orchestrations available as π-calculus processes we can proceed with introducing
conformance checking, e.g. verifying if the behavior of individual orchestrations
complies to the choreography. Another area of interest is the investigation of
soundness criteria for choreographies. A first starting point could be the sound-
ness criteria for workflows [17].
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