
A Graphical Notation
for Modeling Complex Events in Business Processes

Gero Decker, Alexander Grosskopf
Hasso-Plattner-Institute

Potsdam, Germany
(gero.decker,alexander.grosskopf)@hpi.uni-potsdam.de

Alistair Barros
SAP Research Centre
Brisbane, Australia

alistair.barros@sap.com

Abstract

Using complex event rules for capturing dependencies
between business processes is an emerging trend in en-
terprise information systems. In previous work we have
identified a set of requirements for event extensions
for business process modeling languages. This paper
introduces a graphical language for modeling composite
events in business processes, namely BEMN, that fulfills
all these requirements. These include event conjunc-
tion, disjunction and inhibition as well as cardinality of
events whose graphical expression can be factored into
flow-oriented process modeling and event rule modeling.
Formal semantics for the language are provided.

1 Introduction

Business process modeling languages have a long
tradition of representing coordination requirements of
enterprises through control and data flow dependencies.
Graphical constructs for sequences, conditional branch-
ing, parallelism, synchronization and iteration have a
natural suitability for capturing the dependencies of
activities especially inside organizational boundaries.
With requirements for coordination extending across
collaborating business partners, process languages have
evolved to support asynchronous dependencies between
inter-operating processes, primarily through message
exchanges. It is not uncommon for process languages
nowadays to support more generally asynchronous oc-
currences, or events, considering widely adopted lan-
guages such as Business Process Modeling Notation
(BPMN) [2], UML Activity Diagrams [1] and Business
Process Execution Language (BPEL) [3].

Events in a process model express triggering depen-
dencies with other process models, not only as part of
its initiation and termination, but at other stages of its

execution. The trigger for the initiation of a process
is an event consumed by the process, while the termi-
nation of a process yields an event produced by the
process, allowing it to be consumed outside. Execution
of intermediate stages of a process can similarly involve
event consumption and production.

With trends towards coupling business process with
real-world aware applications using sensor networks and
physical device tracking (radio frequency tags) notably,
limitations of the current event handling in process
languages are apparent. Take an example of a man-
ufacturing process where faults need to be escalated
for timely resolution. These are normally collected and
separately processed through coded logic, however the
different levels of event monitoring and action escala-
tion could be integrated into processes coordinating
relevant business activity. Thus, consumption of events
at different time periods triggering sets of activities
could be made more visible. So too could critical faults
that override non-critical faults, escalating one level of
monitoring and action over another. Such scenarios
featuring composite events and in conjunction, disjunc-
tion and inhibition relations cannot directly supported
through the simple event handling in current process
languages.

In parallel to the evolution of process definition lan-
guages in the field of Business Process Management,
complex event processing has developed through Active
Databases, Message Brokering and Message-Oriented
Middleware. For general description of complex events
in these fields, event pattern languages such as Rapide
[11] and Snoop [6] were introduced. However, only tex-
tual representations are available for event languages
leaving open how they can be suitably expressed in busi-
ness process languages. Without this in place, business
processes with limited event handling are difficult to
align well with complex event specifications, with the
result of specification stove-pipes.

In order to allow a seamless integration of event pat-

1

terns into graphical process modeling languages, we
propose a graphical notation for expressing event pat-
terns, namely BEMN, the Business Event Modeling
Notation. Support of complex events has been inspired
from our previous work in developing event patterns
[5]. These expressed common eventing scenarios in busi-
ness processes and an assessment of BPMN and BPEL
showed that only few of these scenarios are supported.

The remainder of this paper is structured as follows.
Section 3 discusses related work, before section 4 pro-
vides an overview over BEMN. Section 5 introduces
formal semantics and section 6 an assessment of BEMN
regarding its suitability for expressing real-world event-
ing scenarios. Finally, section 7 concludes and gives an
outlook to future work.

2 Event Consumption in BPMN and
BPEL

Important eventing concepts like subscription to
events, matching of events and finally the consumption
of events is present in flow-oriented modeling languages.
E.g. the Business Process Execution Language (BPEL
[3]) However, these languages can only capture simple
eventing scenarios as shown in [5] where typically only
individual events are considered.

The Business Process Execution Language (BPEL
[3]) and BPMN include the notion of events. E.g. in
BPEL invoke, receive and onMessage activities specify
production and consumption of message events. An ini-
tial receive and onMessage activity with the attribute
createInstance set to yes defines a WSDL port type /
operation combination that is relevant for the instan-
tiation of BPEL processes: As soon as a message of
that particular combination arrives, a process instance
is created.

We can find three typical steps for the consump-
tion of events in BPEL: i) A subscription to events
(e.g. incoming messages) is initiated. Subscriptions for
those messages that lead to process instantiation are
initiated at deployment-time of a process definition.
Subscriptions for those messages that are consumed by
a running process instance are normally initiated as
soon as the respective receive or onMessage activity is
reached. BPEL provides correlation mechanisms, where
different process instances can subscribe to message of
the same type (port type / operation). ii) An event oc-
curs, i.e. a message arrives or a timeout occur. iii) The
event is matched by a subscription. This determines
that the event will be consumed by a particular process
instance. Either it is consumed by an already existing
process instance or a new instance is created as result
of that event. In the former case, the BPEL engine

checks the correlation info included in the message and
routes it to the corresponding instance.

As a forth step we could also consider unsubscription.
If an event is not awaited any longer the subscription
is taken back. A typical scenario could be that at a
given moment in the process a message of one out of a
set of different types could be consumed. In this case,
there is a subscription for every type and as soon as
one message arrives no message of the other types is
waited for.

BPEL only considers individual events: It is checked
on a per-message basis if a message matches a registered
subscription (based on the port type, operation and
correlation sets) and only one message is consumed in a
receive or onMessage activity. This is different to what
is demanded e.g. by the event patterns Conjunction
or Inhibition [5]. In the case of Conjunction, different
events have to be present for matching taking place.
This includes atomicity: All or none of the events are
consumed. Inhibition checks the absence of other events,
which is also not supported in BPEL.

BPMN allows more event types than BPEL: In addi-
tion to messages, timeouts and exceptions that are also
present in BPEL, BPMN also comes with rule events
and it even allows to extend the language with cus-
tom defined event types. Since BPMN is basically a
graphical notation without defined execution semantics,
it is unclear how and when subscription for events is
handled in BPMN. Anyway the BPMN assumes that
all messages are persistent. Thus they are kept until a
process instance is ready to consume them. As it is the
case for BPEL, BPMN distinguishes start events and
intermediate events as two kinds of event consumption:
start events lead to process instantiation and intermedi-
ate events are consumed by a running process instance.
BPMN also allows to specify message consumption and
production through send and receive activities. A more
in-depth assessment of BPMN and BPEL can be found
in [5].

3 Related Work

The field of Complex Event Processing (CEP) comes
with a set of languages and architectures for describing
and efficiently executing complex event rules. A good
reference for CEP is the book by Luckham [11], where
he also introduces Rapide, an event pattern language.
A framework for detecting complex event patterns can
be found e.g. in [12]. Considerable work on event pat-
tern languages can also be found in the field of active
databases. In [6] the event algebra Snoop is introduced
and compared with other event languages. However,
these languages only come with textual representations,

2

therefore being unsuited for process modelers who are
used to graphical languages.

Nevertheless, there have been several proposals for us-
ing event rules in the business process domain [8, 7, 9],
especially for exception handling [4]. Flow-oriented
modeling languages and event rule languages are com-
pared in [10] regarding their control flow capabilities.
Strengths and weaknesses are identified along the five
dimensions expressibility, flexibility, adaptability, dy-
namism and complexity.

Flow-oriented business process modeling languages
have a long tradition in the field of Business Process
Management (BPM). The Business Process Modeling
Notation (BPMN [2]) is considered the de-facto stan-
dard. It comes with notational elements for concepts
such as declarations for event consumption and event
production, repetitions and cancellation. These con-
cepts are also present in event rules and therefore nota-
tional elements can be reused for allowing a seamless
integration of the flow-oriented and the event-rule-based
modeling paradigm for business processes.

4 Language Overview

4.1 Language Constructs

The Business Event Modeling Notation (BEMN)
serves to define event rules. Each rule consists of a
event pattern description, specifying combinations of
events that can be matched, as well as a set of output
event declarations indicating what kind of events are to
be produced as a result of the firing of a rule. Figure 1
shows all language constructs of BEMN.

Input event declarations specify events to be ob-
served. Precedence relationships specify a time con-
straint between two objects: the source object must
have occurred before the target object. Inhibition rela-
tionships specify that the source object must not have
occurred before the target object. OR operators and
AND operators logically relate incoming relationships.
As an example imagine two input event declarations
A and B preceding an OR operator which in turn pre-
cedes a third input event declaration C. A or B need
a corresponding event preceding a corresponding event
for C in order for the pattern to be matched. Also if
there is a corresponding event for both A and B as well
as for C, the pattern would match.

Groupings are sets of objects with additional con-
straints. Filters attached to groupings provide con-
straints for the events corresponding to the declarations
contained in the grouping. There are different types of
filters: time-related, process-data-related, environment-
data-related and other filters. Each filter comes with

an expression describing the constraint. Filters can also
be directly attached to individual event declarations,
which is an abbreviation for a grouping only containing
one object. Furthermore, groups can be typed as repeti-
tions. Finally, input event declarations can be placed at
group boundaries (“exception event declarations”). In
this case, a corresponding event serves as an inhibitor
for the grouping.

Output event declarations specify the events to be
produced upon firing of a rule.

4.2 Examples

Error Report Carrier Breakdown

10

< 10minSame truck

Figure 2. Example 1: Carrier breakdown

Figure 2 shows a BEMN example. Error reports of
trucks are to be collected. However, immediate action
is only needed as soon as a threshold is reached. In
this case 10 error reports of the same truck have to
appear within 10 minutes, resulting in the production
of a carrier breakdown event that in turn can be used as
process instantiation or cancellation trigger in a process
model.

Outgoing
Payment

Transaction

Fraud alert

Same invoiceID

Invoice

Figure 3. Example 2: Fraud alert

Figure 3 shows a simple fraud alert scenario. Every
time an outgoing payment transaction happens without
having received a corresponding invoice before, the alert
is raised.

BEMN can both be used in stand-alone diagrams but
is also supposed to be integrated into BPMN process
models. Figure 4 illustrates how flow-oriented modeling
and event rule modeling go hand in hand. In this ex-
ample, an order request is processed involving a logistic

3

input event
declaration

output event
declaration

precedence
relationship

inhibition
relationship

OR operator AND operator

grouping filters

OR AND

repetition

3..5

Figure 1. BEMN constructs

Check
purchased

items in stock

Create
order

Confirm
order

request

Send shipment
request to

logistic partner

Reject
order

request

Start reple-
nishment

Send pickup
information to

carrier

Cancel
logistic
request

Order
can be

fulfilled?

Order
request

Logistic
request

confirmation

Carrier
shipment
confirmation

Order cancel-
lation request

Oder change
request

Confirmation from logistic
partner and carrier

yes

no

AND

Figure 4. BPMN diagram enhanced with event conjunction expressed in BEMN

partner and a carrier. Based on the current purchased
items in stock the order can be fulfilled or not. If not
the order request is simply rejected and replenishment
is triggered. If the order can be fulfilled the request is
confirmed and a shipment request is sent to a logistic
partner. Now three events can happen: 1) An order
change request comes in, leading to the cancellation
of the logistic request and a re-evaluation whether the
order can be fulfilled. 2) An order cancellation request
arrives, also leading to the cancellation of the logistic
request. 3) Both confirmations from the logistic partner
and the actual carrier which was selected by the logistic
partner are available. Only in this third case the pickup
information is sent to the carrier.

In this example we see the occurrence of event con-
junction (cf. [5]). Two elementary events form a com-
posite event which in turn is consumed in the business
process. Having the possibility to specify such event
patterns as integral parts of process models dramatically

reduces the complexity of such models.
When modeling the same scenario using classical

BPMN, events could only be consumed one at a time.
In this particular example we see that the composite
event declaration direct follows an event-based XOR-
gateway. This gateway indicates a racing condition
between the three event declarations.This makes the
motivation for atomicity of composite events obvious.
When expanding the same semantics into a pure BPMN
diagram, the number of elements in the diagram would
be significantly higher.

5 Formal Semantics

This section is going to define an abstract syntax for
BEMN models and give these models a formal execution
semantics. As part of that, core event composition
models will be introduced as a special class of BEMN
models. The idea behind is that the semantics of such

4

a model can be directly given and that core models
represent the unit of execution: Matching and firing of
a core model will result in a single transactional step,
while firing of non-core models might involve several
steps. Non-core models therefore represent a set of
core models. An algorithm will be provided for this
transformation.

5.1 Abstract Syntax

An event composition model EC is a tuple EC =
(O, ED, Op, EDI , EDO, OpA, OpO, Gr, gt, gcmin,
gcmax, EGr, cons, Pr, Inh, F , FGr), where

• O is a set of objects which can be partitioned
into disjoint sets of event declarations ED and
operators Op,

• ED can be partitioned into disjoint sets of input
event declarations EDI and output event declara-
tions EDO,

• Op can be partitioned into disjoint sets of AND
operators OpA and OR operators OpO,

• Gr ⊆ ℘(O) is a set of sets of objects, so called
groupings,

• gt : Gr → {r, n} is a function specifying the type
of a grouping: repeated or normal,

• gcmin, gcmax : Gr → N are two functions specify-
ing the cardinality of a repeated grouping (mini-
mum number and maximum number),

• EDGr : EDI → Gr is a partial function linking
an input event declaration to a grouping, hence
making it an exceptional event declaration for that
grouping,

• cons : EDI → {once, always} is a function deter-
mining whether an event should be consumed once
or potentially multiple times,

• Pr ⊆ O ×O is the precedence relation on objects,

• Inh ⊆ O ×O is the inhibition relation on objects,

• F is a set of filters and

• FGr : F → Gr is a function linking a filter to a
grouping.

We introduce the auxiliary functions
inPr, inInh, in, outPr, outInh, out : O → ℘(O),
where inPr(o) := {x ∈ O | x Pr o} and
outPr(o) := {x ∈ O | o Pr x}, inInh and outInh analo-
gously and in := inPr ∪ inInh, out := outPr ∪ outInh.
The constraints below are assumed to be satisfied by
any BEMN model:

• every input event declaration that is not at-
tached to a grouping has at least 1 outgoing
relationship and has a path of Pr and Inh re-
lationships to an output event declaration, i.e.
∀e ∈ EDI \ dom(EDGr) [|out(e)| ≥ 1 ∧ ∃o ∈
EDO (e(Pr ∪ Inh)+o)],

• every output event declaration has at least 1 in-
coming and exactly 0 outgoing relationships, i.e.
∀e ∈ EDO [|in(e)| ≥ 1 ∧ |out(e)| = 0],

• every operator has at least 1 incoming and 1
outgoing relationship, i.e. ∀o ∈ Op [|in(o)| ≥
1 ∧ |out(o)| ≥ 1],

• in each grouping there is at most one object that
has an incoming relationship with a source outside
the grouping and at most one object that has an
outgoing relationship with a target outside the
grouping, i.e. ∀g ∈ Gr [|{o ∈ g | in(o) \ g 6= ∅}| ≤
1 ∧ |{o ∈ g | out(o) \ g 6= ∅}| ≤ 1],

• if two groupings contain the same objects then one
grouping must be fully contained in the other, i.e.
∀g1, g2 ∈ Gr [g1 ∩ g2 6= ∅ ⇒ g1 ⊂ g2 ∨ g2 ⊂ g1],

• the minimum cardinality of a grouping must be
at least 1 and the maximum cardinality must be
greater or equal the minimum cardinality, i.e. ∀g ∈
Gr [1 ≤ gcmin ≤ gcmax],

• an input event linked to a grouping must
not have incoming relationships, i.e. ∀e ∈
dom(EDGr) [|in(e)| = 0],

• Pr and Inh are disjoint, i.e. Pr ∩ Inh = ∅,

• Pr is acyclic,

• source and target of an Inh are not the same object,

• for every output event declaration there must be
at least one input event declaration with a path
of Pr relationships to that declaration, i.e. ∀e ∈
EDO [∃e2 ∈ EDI (e2 Pr+ e)],

• for every input declaration there exists a path of Pr
and Inh relationships containing at most one Inh
relationship to any following output declaration, i.e.
∀e ∈ EDI , o ∈ EDO [e(Pr ∪ Inh)+o ⇒ e Pr+ o ∨
∃(e1, e2) ∈ Inh (e Pr∗ e1 ∧ e2 Pr∗ o)] and

• for every input declaration contained in a group-
ing with an event declaration attached to it and
for every event declaration attached to a group-
ing there exists a path of Pr relationships to any
following output declaration, i.e. ∀e ∈ EDI , o ∈
EDO [e(Pr ∪ Inh)+o ∧ (∃g ∈ G (e ∈ g ∧ g ∈
range(EDGr)) ∨ e ∈ dom(EDGr)) ⇒ e Pr+ o].

5

Event Object

Event Declaration

Inhibition Rel

Operator

Grouping

Input Event Decl

Output Event Decl
OR Operator

AND Operator

1

1

*
*

*

0..1

*

+target

+source*

*

1

1+target

+source
Precedence Rel

+inhibition
 events

Filter1 *
gt: {r, n}

gcmin, gcmax: N

cons: {once, always}

Figure 5. BEMN meta-model

5.2 Core event composition models

A core model is a BEMN model where the following
constraints hold:

• every input event declaration has at most 1 in-
coming and exactly 1 outgoing relationship, i.e.
∀e ∈ EDI [|in(e)| ≤ 1 ∧ |out(e)| = 1],

• every output event declaration has exactly 1 in-
coming relationship, i.e. ∀e ∈ EDO [|in(e)| = 1],

• there is only 1 end event declaration, i.e. |EDO| =
1,

• there is no OR operator, i.e. OpO = ∅,

• no intermediate event is linked to a grouping, i.e.
EDGr = ∅ and

• no grouping is of type repetition, i.e. ∀g ∈
Gr [gt(g) = n].

We introduce the auxiliary functions med and ied
assigning a set of input event declarations to an event
composition model EC, where we call med(ec) := {e ∈
EDI | ∃o ∈ EDO (e Pr+ o)} the match declarations
and ied(EC) := EDI \med(EC) the inhibitor declara-
tions for EC.

5.3 Semantics of Core Event Composition
Models

During execution we deal with a stream of events
where event rules can be matched and lead to firing,
hence the production of new events. Firing happens
atomically. We introduce the notion of subscriptions for
enabling event rules, i.e. only if a subscription to a cer-
tain rule exists, this rule might fire. Subscriptions are
subject to so called subscription scopes. In the process-
oriented world, a scope would typically be a process
instance or an activity instance, but alternatively it
could also be a group of process instances or even the
whole system. Scopes are important for the cardinality
of consumption of individual events. Events that corre-
spond to match declarations might be used in one firing
per scope or an arbitrary number of times. E.g. an
incoming order request should only be processed once,
while a product out of stock event might be consumed
multiple times as context information.

We formally represent our execution environment as
follows:

• E is a set of events,

• EM is a set of event composition models,

• Sub is a set of subscriptions,

6

• Sc is a set of subscription scopes, where global ∈ Sc
is the global scope,

• sub : Sub → Sc × EM is a function linking a
subscription to a scope and an event model,

• < ⊂ (E ∪ Sub ∪ {now} ∪ Time)2 is a relation
fully temporally ordering events, subscriptions, the
current time and any other point in time and

• Consumed ⊆ Sc×E is a relation indicating that
an event was already consumed for a subscription
scope.

A subscription scope could be a process instance, an
activity instance or a group of process instances. We
introduce a boolean function applies : F × ℘(E) →
{true, false} indicating whether the criteria of a given
filter applies to the given set of events.

A set of events M can lead to firing of a subscrip-
tion s ∈ Sub with its corresponding BEMN model and
scope (sc, em) = sub(s) iff there is a bijective func-
tion mapM : med(em) → M , the match condition
CM (sc, em,mapM) is fulfilled and there does not exist
an injective function mapI : ied(em) → (E \M) such
that the inhibition condition CI(sc, em,mapI ∪mapM)
is fulfilled. As a result of the firing an event of the type
given in the output event declaration of em is produced
and all those events are marked as consumed for sc
the corresponding input event declaration of which is
defined as once.

The match and inhibition conditions are defined as
follows:

CM (sc, em, mapM) := ∀ed ∈ range(mapM)
[cons(ed) = once ⇒
(sc,mapM (ed)) /∈ Consumed]∧

∀(ed1, ed2) ∈ Pr+ [{ed1, ed2} ⊆ med(sc) ⇒
mapM (ed1) < mapM (ed2)]∧
∀f ∈ F [CF (em, f,mapM)]

CI(sc, em, map) := ied(em) 6= ∅∧
∃(o1, o2) ∈ Inh (∀ed1 ∈ prec(o1), ed2 ∈ succ(o2)

[map(ed1) < map(ed2)]∧
∀(ed1, ed2) ∈ Pr+ [ed2 ∈ ipr(o1, em) ⇒
map(ed1) < map(ed2)]∧
∀f ∈ F [CF (em, f,mapM∪
(mapI ∩ (ipr(o1, em)× E)))])

CF (em, f,map) :=
applies(f, range(map ∩ (FGr(f)× E)))

prec(o) := {ed ∈ EDI |
ed Pr∗o ∧ ¬∃ed′ ∈ EDI (ed Pr+ ed′ ∩ ed′ Pr+ o)}

succ(o) := {ed ∈ EDI |
o Pr∗ed ∧ ¬∃ed′ ∈ EDI (o Pr+ ed′ ∩ ed′ Pr+ ed)}

ipr(o, em) := {ed ∈ ied(em) |
∃ed2 ∈ prec(o) (ed Pr∗ ed2)}

5.4 Example

Figure 6 shows a sample core model em. Its formal
representation is

• O = {a, b, c, i, op, x}, ED = {a, b, c, i, x}, EDI =
{a, b, c, i}, EDO = {x}, OpA = {op}, OpO = ∅,

• Gr = {{a}, {b}, {c}, {i}}, gt = Gr×{n}, EGr = ∅,

• cons = EDI × {once},

• Pr = {(a, op), (b, op), (op, c), (c, x)},

• Inh = {(i, b)},

• F = {A,B,C, I} and FGr =
{(A, {a}), (B, {b}), (C, {c}), (I, {i})}.

A

X
BI C

AND

Figure 6. Sample core model

eA eB eC eI

Figure 7. Sample event stream

We see that the event types A,B,C, I are actually
represented by filters for the individual event declara-
tions.

Now imagine a stream of events [eA, eB , eC , eI] (see
Figure 7), a subscription s and a subscription scope
sc, where sub(s) = (sc, em). The events eA, eB , eC , eI

are of types A,B,C, I, i.e. applies(A, {eA}) = true
etc. None of the events has been consumed yet for
the subscription scope sc, i.e. (sc, eA) /∈ Consumed
etc. Following the order in the event stream, we know
that eA < eB and eB < eC etc. Furthermore, we see
that the match declarations are med(em) = {a, b, c}
and the inhibitor declarations are ied(em) = {i}. The
function assigning events to match declarations would
be mapM = {(a, eA), (b, eB), (c, eC)}.

The match condition CM is fulfilled as eA, eB and
eC have not been consumed yet for sc, the Precedence
constraints are not violated, i.e. eA < eC and eB < eC ,
and all filter criteria are satisfied.

7

The only possible mapI is {(i, eI)}. When looking
at the tuple (o1 = i, o2 = b) ∈ Inh we see that the
inhibition condition CI is not fulfilled as eI < eB is not
the case.

5.5 Translating Non-core Models into
Core Models

We already defined the execution semantics for core
models. The semantics of non-core models is given
through a translation to a set of core models. Figure 8
illustrates these translation rules:

1. repetitions are resolved through the duplication of
the structure contained in the grouping,

2. in the case of more than one outgoing or incoming
relationship AND operators are introduced,

3. OR operators with more than one outgoing rela-
tionship are replaced by a combination of OR and
AND operators,

4. OR operators are resolved by creating several event
composition models,

5. several output event declarations are resolved
through the creation of several event composition
models,

6. exceptional event declarations attached to group-
ings are resolved by introducing AND operators in
combination with Inh relationships.

Especially the proposed translation of cardinality
ranges for repeated groupings leads to a huge number of
core models. However, optimization in implementations
is easily possible through the introduction of pattern
matching counters for each subscription.

6 Validation

In previous work [5] we have presented a catalog of
typical eventing scenarios in business processes. We
are going to investigate which of these scenarios are
supported in BEMN.

In the case of Event Conjunction two or more events
have to have occurred in order to be matched. This is
directly supported in BEMN through the AND operator.
If there are alternatives of events that have to have
occurred in order to be matched we deal with Event
Disjunction. This is supported through the OR operator.
For Event Cardinality a specified number of events
have to have occurred in order to be matched. This
could either be a fixed number of events or a range of

numbers. The fixed number case is supported through
repeated groupings where the minimum and maximum
cardinality are equal. The other case where a range of
numbers is given where the maximum number is higher
as the minimum number. In the case of Inhibiting Event
an event can only be matched in the absence of another
specified event. This is supported in BEMN through
inhibition relationships.

For Event – Event Time Relation two events can
only be matched if their occurrence happens within or
outside a given timeframe. This is supported through
groupings with a time filter attached to it. The special
case of this pattern, where one event always has to
have occurred before the other is supported through
precedence relationships. Event – Subscription Time
Relation is also supported through groupings with a
time filter attached to it. However, as opposed to
the previous pattern, the filtering function will not
compare the timestamps of pairs of events but rather
compare timestamps of events with the timestamp of
the subscription. In the case of Event – Consumption
Time Relation the events’ timestamps are compared to
now, which is also included in the < relation. Event
– Absolute Time Relation demands that an event can
only be matched if it occurs before or after an absolute
point in time. Absolute points in time are included in
the < relation, too.

For Event – Event Data Dependency two events can
only be matched if their data is in a specified rela-
tion. This is supported through groupings with data
dependencies attached to it. In the case of Event –
Process Instance Data Dependency an event can only
be matched if its data is in a specified relation to the
control data of the subscribing process instance. In anal-
ogy Event – Environment Data Dependency demands
that the event’s data has to be in a specific relation to
environment data. These two patterns are covered in
corresponding data filters.

The two Consumption Patterns Consume Once
and Consume Multiple are supported through the
attributes once and always as well as through the
subscription scopes. If an event e is to be consumed
exactly once, then the corresponding event declaration
ed must have cons(ed) = once and the subscription
scope must be set to global. For Consume Multiple
either always is set for the event declaration or for ev-
ery consumption a different subscription scope is chosen.

We have implemented a graphical editor based on
the GMF framework1 for an important subset of BEMN.
This tool also implements the transformation of non-
core to core models and of core models to logical ex-

1See http://www.eclipse.org/gmf/

8

Y

X X

Y

2)

4) 5)

6)

1)

A
B

C
A

B

C

A

B
C

A

B
C

3)
A

B

C

D

A

B

C

D

AND AND

OR OR AND

A

B
COR

A

B

C

C
A AND

A

A

A

C

B AND

B

C

A

2

A

A C

C AND

A C
AND

2..3

A C

OR
3

A C

AND 2

A C

A C

AND

OR

A

C

B AND

B

C

A

Figure 8. Rules for translating non-core models into core models

pressions were implemented.

We have validated the notational elements for the
language through a user survey involving practitioners
from the Business Process Management domain. In
this survey alternative notational elements were pre-
sented to the users and they selected those that were
most intuitive in their opinion for representing different
eventing scenarios.

7 Conclusion

In this paper we have presented a new language for
describing complex event patterns, namely the Busi-
ness Event Modeling Notation (BEMN). A graphical
notation was introduced and the language was given
a formal semantics. The semantics was defined in two
steps: (i) A mapping from core event models to logical
expressions was provided. (ii) Non-core event models

9

have to be transformed into a set of core event models.
Mapping rules for such a transformation were provided.

We have used a previously defined requirements
framework for assessing the suitability of the language
for expressing common eventing scenarios in business
processes. BEMN supports most of the requirements
and therefore has a high suitability for real-world use
cases. Further validation was provided through proto-
typical implementation and a user survey concerning
the notational elements.

As flow-oriented process modeling and event pattern
modeling might be alternatively used to capture the
same scenario, it has to be further studied in what par-
ticular situation what paradigm is more suited. Further-
more, the joint usage of both paradigms requires com-
bined model verification and management techniques.

References

[1] UML 2.0 Superstructure Specification. Technical
report, Object Management Group (OMG), Au-
gust 2005.

[2] Business Process Modeling Notation (BPMN) Spec-
ification, Final Adopted Specification. Technical
report, Object Management Group (OMG), Febru-
ary 2006. http://www.bpmn.org/.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Busi-
ness Process Execution Language for Web Services,
version 1.1. Technical report, OASIS, May 2003.
http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel.

[4] J. Bae, H. Bae, S.-H. Kang, and Y. Kim. Automatic
control of workflow processes using eca rules. IEEE
Transactions on Knowledge and Data Engineering,
16(8):1010–1023, 2004.

[5] A. Barros, G. Decker, and A. Grosskopf. Complex
Events in Business Processes. In Proceedings 10th
International Conference on Business Information
Systems (BIS), number 4439 in LNCS, pages 29–40,
Poznan, Poland, April 2007. Springer.

[6] S. Chakravarthy and D. Mishra. Snoop: An ex-
pressive event specification language for active
databases. Data Knowledge Engineering, 14(1):1–
26, 1994.

[7] G. Kappel, S. Rausch-Schott, and W. Retschitzeg-
ger. Coordination in workflow management sys-
tems - a rule-based approach. In Coordination

Technology for Collaborative Applications - Organi-
zations, Processes, and Agents [ASIAN 1996 Work-
shop], pages 99–120, London, UK, 1998. Springer-
Verlag.

[8] G. Kappel, S. Rausch-Schott, and W. Retschitzeg-
ger. A framework for workflow management sys-
tems based on objects, rules and roles. ACM Com-
put. Surv., 32(1es):27, 2000.

[9] G. Knolmayer, R. Endl, and M. Pfahrer. Mod-
eling processes and workflows by business rules.
In Business Process Management, Models, Tech-
niques, and Empirical Studies, pages 16–29, Lon-
don, UK, 2000. Springer-Verlag.

[10] R. Lu and S. Sadiq. A Survey of Comparative
Business Process Modeling Approaches. In Pro-
ceedings 10th International Conference on Business
Information Systems (BIS), number 4439 in LNCS,
pages 82–94, Poznan, Poland, April 2007. Springer.

[11] D. Luckham. The Power of Events: An Introduc-
tion to Complex Event Processing in Distributed
Enterprise Systems. Addison-Wesley, 2001.

[12] P. R. Pietzuch, B. Shand, and J. Bacon. A Frame-
work for Event Composition in Distributed Sys-
tems. In Proceedings of the 4th International Con-
ference on Middleware (MW’03), Rio de Janeiro,
Brazil, 2003.

10

